PalArch's Journal of Archaeology of Egypt / Egyptology

A STANDARD STUDY OF INVESTIGATING THE IMPACT OF SOME ECONOMIC VARIABLES IN IRAQI INVESTMENT

Waleed Ahmed Hassen

University of Diyala \ College of Education for Pure Sciences

Email: purecomp.waleed.hassan@uodiyala.edu.iq

Waleed Ahmed Hassen. A Standard Study of Investigating the Impact of Some Economic Variables in Iraqi Investment -- Palarch's Journal of Archaeology of Egypt/Egyptology 18(17), 839-853. ISSN 1567-214x

Keywords: Investment - National Income - Dickey Fuller Test

ABSTRACT

Before proceeding to study the fluctuations of any economic phenomenon, it is necessary to first ascertain the existence of a trend in the time series, and according to the nature of the growth of the series, we can distinguish between stable time series and unstable time series. The stable time series can be defined as that series whose levels change with time without changing the average in it during a relatively long period of time, meaning that the series has no tendency towards increase or decrease. As for the unstable time series, the average level in it is constantly changing, whether towards increase or decrease.

The aim of this research is to show the extent of the impact of some economic variables represented by money supply, gross domestic product, national income, after reaching the state of stability for these variables, and it was concluded that most of these variables are unstable in the time series, but stable in the first difference. It was also concluded that the contribution of the independent variable (money supply) to investment is negative, and that the negative sign of the independent variable parameter (money supply) is consistent with the economic logic of the modern quantity theory (Chicago School) Friedman and his supporters that the growth of money supply should be proportional to the growth of money supply. Gross domestic product so as not to cause imbalances in the economy and thus its negative impact on investment. The growth of money supply in Iraq was not commensurate with the growth of the gross domestic product, because an increase in the money supply can affect some other economic factors, and some of these factors have an impact on the economy, leading to an increase in interest rates and consequently to a reduction in investment. The price level and the expected effect of inflation.

INTRODUCTION

Some see that investment means "sacrificing a current benefit that can be achieved from the satisfaction of a current consumer in order to obtain a future benefit that can be obtained from a greater future consumption." Others define investment as "giving up on the use of current funds and for a certain period of time in order to obtain more cash flows in the future as a compensation for the lost opportunity for the invested funds, as well as compensation for the expected decrease in the purchasing power of the invested funds due to inflation with the possibility of obtaining a return." On this basis, it can be said that investment differs from saving, which means "withholding part of the current consumption in order to obtain more consumption in the future," and saving differs from investment in that saving does not bear any degree of risk [Al-Mandalawi,2004, p.1].

On the other hand, the investment falls within the institutions sector, where the investment represents the funds allocated for the production of machinery, equipment, buildings and the like, and the funds allocated to increasing the stock. It is thus, according to Ketter's theory, that it changes according to the interest rate, because the demand for funds allocated for investment is from banks and banks that deal with the principle of interest, and therefore there is an inverse relationship in theory between investment and interest, the lower the interest rate, this encourages investors to invest. Both the classical theory and the Keynesian theory showed that an increase in investment leads to an increase in national product. The classic emphasized the necessity of capital accumulation, especially in the industrial sector, as the growth of national product is determined by the rate of capital formation in that sector. They also indicated that the investment demand represents an automatic process, as the demand for money is for the purposes of borrowing and converting it into investment spending, and with the convergence of investment and saving, the interest rate is determined., then a decrease in the interest rate, and then an increase in investment, which increases the national product to a level sufficient to achieve full employment.

The Keynesian theory sees, as far as the relationship between investment and income is concerned, that the national product depends on the volume of investment and its extensions, thus emphasizing that investment is the determinant of the growth of national income in the short term, and an engine for increasing productivity and growth rate in the economy in the long term, and that this investment is determined by both the price of Marginal interest and adequacy of capital. [Ismail, 2005, p.10].

In line with that, it turns out that Marxist thought has given importance to investment in economic development, as it emphasized that the continuous increase in accumulation leads to an increase in production capacity, although this increase is not accompanied by a corresponding increase in purchasing power.

On the other hand, it is noted that the neoclassical school has gone further, as it emphasized the importance of investment lies in economic growth, especially investment in human capital, but it considered investment in physical capital a necessary condition for economic growth.

Based on the foregoing, it can be said that there is a direct direct relationship between the volume of investment and the national product, that is, the increase in investment leads to an increase in the national product, just as the increase in the national product leads to an increase in investment, and based on what was proposed by the Keynesian theory, Induced investment is a function of increasing levels of income and is generated as a result of the action of the acceleration principle. When income increases, consumer demand increases, which is a catalyst for increased investment. As the net investment determined by the accelerator will be positive when the income increases, equal to zero if the income remains constant, and negative when it decreases.

Research Objective:

The research aims to use the standard method represented by the expanded Dickey-Fuller test to test the stability of the variables of the investment function in Iraq and their impact on the estimation

RESEARCH METHODOLOGY

To achieve the objectives of this research, we will use the quantitative analytical method based on modern standard methods, according to the following steps:

1 -Using the developed Dickey-Fuller test to test each of the variables used in the estimate

2 -Using the difference method to address the instability of the time series of the variables used in the estimation

The General Framework Of The Research:

The time series of indicators of some economic variables related to the investment function in Iraq for the period (2001-1981) was relied upon.

Research Problem:

The research problem is to test the stability of the time series and its impact on estimating the investment function in Iraq.

Research Hypotheses:

The research includes testing the following null hypothesis:

H0: There is no unit root in the time series for the variables used in the search. 7-1search variables:

The variables of the investment function were used, including the following:

The dependent and included variable:

y: investment

Investment is defined as sacrificing a current benefit that can be achieved from satisfying current consumption with the intention of obtaining a greater future benefit that can be achieved from satisfying future consumption.

[Al-Hamoud, 2004,[p.10.]. X1: Cash offer

The concept of money supply refers to the net currency in circulation in addition to the current deposits (Demand deposits), which are deposits that banks are obligated to pay to the person on demand [Al-Mandalawi, 2004, chapter 2].

X2: Gross domestic product

The concept of domestic product is related to the productive economic activities that take place within the political boundaries of a particular society during a certain period of time, and the output is the sum of the added values that are realized locally] Muhammad, [p.5]

X3: Income. National Income

It is the value of this country's production of goods and services during a specific period that is taken as a basis for measuring this income. The economic norm may be based on estimating national income for a period of time of one year.

[Al-Mandalawi, 2004, chapter 2]

Table No. 1 Some variables of the investment function used in the research

The years	Gross fixed capital formation at constant prices	M1 cash offer	GDP at constant prices	National income at constant prices
1980	6974.00	2650.20	19046.90	37027.33
1981	9714.70	3645.50	18908.10	20291.38
1982	10294.10	4980.70	19557.40	19386.22
1983	8107.17	5527.40	17000.60	17317.32
1984	6066.06	5499.90	16748.10	18749.78
1985	5424.83	5777.00	16991.60	18219.89
1986	3269.36	6736.60	17781.30	1750.29
1987	3953.52	8316.70	19435.90	18581.67
1988	4396.60	9848.00	19432.20	16982.90
1989	5840.53	11868.20	18826.20	16808.00
1990	4700.03	15359.30	16373.40	12418.18

1991	597.64	24670.00	7134.80	4058.15
1992	568.45	43909.00	8964.00	5868.85
1993	728.42	86430.00	13318.40	4797.87
1994	448.12	23890.10	12703.40	40535.30
1995	309.66	705064.0	10376.80	2894.41
1996	139.83	960503.0	15527.80	3860.00
1997	235.86	1038097	18926.10	4033.87
1998	326.10	1351876	18640.30	4965.83
1999	464.02	1483836	21561.90	6255.33
2000	897.55	1728006	23180.60	7019.35
2001	1456.55	2159089	25533.30	7526.76

Application Part:

The advanced economic measurement program EVIEWS7.2 was used for the purpose of applying the expanded Dickey Fuller methodology in testing the stability of the time series with respect to the research variables, as follows:

Extended Dickey-Fuller test for the money supply variable

For the purpose of applying the extended Dickey-Fuller test for the money supply chain, the following stages have been passed:

-1Estimation of the third model, which includes a fixed boundary and time trend:

$$\Delta Y_{t} = a + \beta t + \lambda Y_{t-1} + \sum_{j=1}^{k} P_{j} \Delta Y_{t-j} + U_{t}$$

So that:

 α : constant limit parameter

 β : time trend parameter

 ΔY_t : The first difference to the money supply variable

 Y_{t-1} :money supply is slow one time period

Where the results were as follows:

The Dickey-Fullier Extension Test of The Third Criticism Presentation Fixed, General Direction

	The null hypothesis: the time series contains a unit root (the					
	series is unstable)					
	Exogenous:	Constant, L	inear Trend			
Prob.*	Test value					
0.9932	0.008378	Dickey-Fu	ller Expanded	Test of Statistics		
	-4.498307		1% level	Critical values for the test		
	-3.658446		5% level			
	-3.268973		10% level			
The probability value	Test T	standard	parameter	variable		
of the test		error	value			
0.9934	0.008378	0.104562	0.000876	Money supply slowed one		

				time period
0.2860	-1.101625	88482.43	-97474.42	fixed limit
0.0802	1.860355	10490.42	19515.91	time direction
107772.2	The mean	of the	0.380535	The coefficient of
	dependent v	ariable		determination
187854.0	The	standard	0.307657	Modified determination
	deviation	of the		factor
	dependent v	ariable		
26.89453	Akaike info	criterion	156308.0	standard error of the
				regression
27.04389	Schwarz crit	terion	4.15E+11	The sum of the squares of
				the remainders
26.92368	Hannan-Qui	inn criter.	-265.9453	Log likelihood
2.179465	Durbin-Wat	son stat	5.221513	Test F
			0.017066	Prob(F-statistic)

According to Table (2) it is noted that:

1 -The calculated value of the expanded Dickey-Fuller test, which is (0.008378) is less than the critical values of the test under a significant level (1%,5%,10%) in absolute terms, which leads to the acceptance of the null hypothesis that there is a single root of the money supply chain, so We will move to the next step, which is to test the significance of the time trend, as follows:

2 -The calculated value of the t-test for the time trend parameter has reached (-1.101625), which is less than the tabular values under a significant level (1%,5%,10%) in absolute values, and this is a preliminary indication that the series is unstable, and therefore, we will move to the next step:

Estimation of the second model, which includes a fixed limit:

This step includes estimating the second model, which is represented by the presence of a categorical, which can be written as follows:

$$\Delta Y_{t} = a + \lambda Y_{t-1} + \sum_{j=1}^{k} P_{j} \Delta Y_{t-j} + U_{t}$$

Where the results were as the results were shown in the following table:

	The null h	ypothesis: the	e time series	contains a unit root (the
	series is un	stable)		
	independen	t variables: c	ategorical	
Lag Length: 0 (Automatic - based or	n SIC, maxlag	=4)	
Prob.*	Test value			
0.9999	2.478374	Extended Di	ckey-Fuller	Test Statistics
	-3.808546		1% level	Critical values for the

Table (3) The Dickey-Fullier Extended Test of the second model of criticism (fixed limit)

				test
	-3.020686		5% level	
	-2.650413		10% level	
The probability value of	ſ	standard	parameter	
the test	Test T	error	value	variable
				Money supply slowed
0.0233	2.478374	0.064414	0.159642	one time period
0.2972	1.073479	44450.13	47716.29	C fixed limit
	The mea	n of th	e	The coefficient of
107772.2	dependent	variable	0.254422	determination
	The standa	ard deviatio	n	
	of the	dependen	nt	Modified
187854.0	variable	-	0.213001	determination factor
				standard error of the
26.97983	Akaike info	o criterion	166650.9	regression
				The sum of the
				squares of the
27.07940	Schwarz cr	riterion	5.00E+11	remainders
26.99927	Hannan-Q	uinn criter.	-267.7983	Log likelihood
2.097607	Durbin-Wa	atson stat	6.142340	Test F
			0.023332	Prob(F-statistic)

According to Table (3) it is noted that:

1 -The calculated value of the expanded Dickey-Fuller test, which is (2.478374), is less than the critical values of the test under a significant level (1%,5%,10%) in absolute terms, which leads to the acceptance of the null hypothesis that there is a single root of the money supply chain, so We will move to the next step, which is to test the significance of the fixed term, as follows:

2 -The calculated value of the t-test for the fixed term parameter has reached (1.073479) which is less than the tabular values under the significant level (1%,5%,10%) in absolute values.

3 -Estimation of the first model, which includes the absence of a fixed limit and time trend:

This step includes estimating the third model, which is represented by the absence of a categorical and general trend, which can be written as follows:

$$\Delta \boldsymbol{Y}_{t} = \lambda \boldsymbol{Y}_{t-1} + \sum_{j=1}^{k} \boldsymbol{P}_{j} \Delta \boldsymbol{Y}_{t-j} + \boldsymbol{U}_{t}$$

Where the results were as follows:

	The null hy	pothesis: T	he time se	ries contains a unit root				
	(the series is	the series is unstable)						
		Exogenous: None						
Lag Length: 0	(Automatic	- based on S	SIC, maxlag	g=4)				
Prob.*	Test value							
0.9996	3.639783	3.639783 Extended Dickey-Fuller Test Statistics						
				Critical values for the				
	-2.685718		1% level	test:				
	-1.959071		5% level					
	-1.607456		10% level					
The								
probability								
value of the		standard	parameter					
test	Test t	error	value	variable				
				Money supply slowed				
0.0017	3.639783	0.054217	0.197337	one time period				
	The mear	n of the	2	The coefficient of				
107772.2	dependent v	ariable	0.206690	determination				
	The standar	rd deviation		Corrected				
	of the	dependent	t	determination				
187854.0	variable	_	0.206690	coefficient				
				standard error of the				
26.94188	Akaike info	criterion	167317.7	regression				
				The sum of the squares				
26.99167	Schwarz cri	terion	5.32E+11	of the remainders				
26.95160	Hannan-Qu	inn criter.	-268.4188	Log likelihood				
			2.041146	Durbin-Watson stat				

Table (4) The Dickey-Fuller Extended Test of the First Criticism Presentation (no fixed, no general direction)

According to Table (4) it is noted that the probabilistic value of the expanded Dickey-Fuller test for the slowed money supply parameter for one time period has reached (0.9996), which is greater than a significant level (1%, 5%, 10%), so the null hypothesis that there is a unit root is accepted. This is an indication of the instability of the time series, so the first differences of the money supply variable will be taken as follows:

Table (5) Dickey-Fullier Expanded Test of the third model for the first difference in the presentation of criticism) fixed, general direction)

	The null hy series is un	The null hypothesis: the time series contains a unit root (the series is unstable)					
	Exogenous	Exogenous: Constant, Linear Trend					
Lag Lengtl	h: 0 (Automati	c - based on	SIC, maxl	ag=4)			
Prob.*	t-Statistic						
0.0104	-4.480421	Augmented	Dickey-F	uller test statistic			
	-4.498307		1% level	Test critical values:			
	-3.658446		5% level				

	-3.268973		10% level	
The				
probability				
value of the	2	standard	parameter	
test	Test t	error	value	variable
				The first difference is the
				money supply slowing
0.0003	-4.480421	0.246554	-1.104667	down one time period
0.1343	-1.572366	81231.02	-127724.9	fixed limit
0.0089	2.950582	7206.435	21263.17	time direction
				The coefficient of
21504.38	Mean depe	endent var	0.545778	determination
				Modified determination
218225.6	S.D. depen	dent var	0.492340	factor
	<u> </u>			standard error of the
26.88398	Akaike inf	o criterion	155486.4	regression
	1			The sum of the squares of
27.03334	Schwarz ci	riterion	4.11E+11	the remainders
26.91314	Hannan-O	uinn criter.	-265.8398	Log likelihood
2.014731	Durbin-W	atson stat	10.21331	Test F
			0.001221	Prob(F-statistic)

It is noted from Table (5) that:

The calculated value of the expanded Dickey-Fuller test, which is (-4.480421), is greater than the critical values of the test under a significant level (1%,5%,10%) in absolute terms, which leads to the rejection of the null hypothesis that there is a unit root of the money supply chain, that is, that The series is stable in the first team

Extended Dickey-Fullier test of the variable gross fixed capital formation

For the purpose of applying the extended Dickey-Fuller test for the money supply chain, the following stages have been passed:

1 -Estimation of the third model, which includes a fixed boundary and time trend:

$$\Delta Y_{t} = a + \beta t + \lambda Y_{t-1} + \sum_{j=1}^{k} P_{j} \Delta Y_{t-j} + U_{t}$$

So that:

 ΔY_t . The first difference for the variable gross fixed capital formation

 Y_{t-1} :Gross fixed capital formation is decelerating one time period Where the results were as follows:

Table (6) The Extended Dickey-Fullier Test of the Third Series of GrossFixed Capital Formation at Constant Prices (fixed, general direction)

	The null hypothesis: the time series contains a unit root (the							
	series is un	series is unstable(
	Exogenous	: Constant	, Linear Trend					
Lag Length	i: 0 (Automa	tic - based	on SIC, maxlag	g=4)				
Prob.*	Test value							
0.8269	-1.406146	Extended	l Dickey-Fuller	Test Statistics				
	-4.498307		1% level	Critical values for the test				
	-3.658446		5% level					
	-3.268973		10% level					
The probabilit y value of	Test t	standar d error	parameter value	variable				
the test								
0.1777	-1.406146	0.18434 2	-0.259212	Gross fixed capital formation (investment) decelerated for one period				
0 5/26	0 610768	1604 41	1050 142	fixed limit				
0.5430	0.019708	1094.41	1050.142	fixed mint				
0.5926	-0.545341	105.027 1	-57.27562	time direction				
-412.9075	The mean	of the	0.205168	The coefficient of				
	dependent	variable		determination				
1307.899	The deviation dependent	standard of the variable	0.111658	Corrected determination coefficient				
17.20931	Akaike criterion	info	1232.719	standard error of the regression				
17.35867	Schwarz criterion		25833139	The sum of thesquaresofremainders				
17.23847	Hannan-Qu criter.	uinn	-169.0931	Log likelihood				
1.619267	Durbin-Wa	tson stat	2.194084	Value F				
			0.142017	Prob (F -statistic)				

It is noted from Table (6) that:

1 -The calculated value of the expanded Dickey-Fuller test of 1.406146 (-) is less than the critical values of the test below a significant level (1%,5%,10%)in absolute terms, which leads to the acceptance of the null hypothesis that there is a unit root of the series total head formation Fixed money, so we will move to the next step, which is to test the morale of the time trend, as follows: 2 -The computed value of the t-test for the time trend parameter has reached (-0.545341) which is less than the tabular values below a significant level (1%,5%,10%) in absolute terms, and this is a preliminary indication that the series is unstable, and accordingly, we will move to the next step:

3 -Estimation of the second model, which includes a fixed limit:

This step involves estimating the second model, which is represented by the existence of a categorical, which can be written as follows

$$\Delta Y_{t} = a + \lambda Y_{t-1} + \sum_{j=1}^{k} P_{j} \Delta Y_{t-j} + U_{t}$$

Where the results were as the results were shown in the following table:

 Table (7) Extended Dickey-Fullier Test of the second model, total capital formation at constant prices (Constant)

	The null h	The null hypothesis: the time series contains a unit root					
	(the series i	s unstable)					
		Exogenous	: Constant				
Lag Length: 0	(Automatic	- based on S	SIC, maxlag	g=4)			
Prob.*	Test value						
0.2600	-2.063234	Extended D	Dickey-Full	er Test Statistics			
				Critical values for the			
	-3.808546		1% level	test:			
	-3.020686		5% level				
	-2.650413		10% level				
The							
probability							
value of the		parameter	parameter				
test	Test t	value	value	variable			
				Gross fixed capital			
				formation (investment)			
				decelerated for one			
0.0538	-2.063234	0.082249	-0.169699	period			
0.6987	0.393323	384.4025	151.1945	fixed limit			
	The mea	n of the	2	The coefficient of			
-412.9075	dependent	variable	0.191263	determination			
	The standa	rd deviation		Corrected			
	of the	dependent	t	determination			
1307.899	variable	-	0.146333	coefficient			
				standard error of the			
17.12666	Akaike info	o criterion	1208.421	regression			
				The sum of the squares			
17.22623	Schwarz cr	iterion	26285063	of the remainders			
17.14609	Hannan-Qu	uinn criter.	-169.2666	Log likelihood			
1.729446	Durbin-Wa	itson stat	4.256935	Value f			
			0.053819	Prob(F-statistic)			

According to Table (7) it is noted that:

1 -The calculated value of the expanded Dickey-Fuller test, which is (-2.063234), is less than the critical values of the test under a significant level (1%,5%,10%) in absolute terms, which leads to the acceptance of the null hypothesis that there is a single root of the investment chain, so We will move to the next step, which is to test the significance of the fixed term, as follows:

2 -The calculated value of the t-test for the fixed term parameter has reached (1.073479) which is less than the tabular values under the significant level (1%,5%,10%) in absolute values.

3 -Estimation of the first model, which includes the absence of a fixed limit and time trend:

This stage represents the assessment of the third model, which is represented by the absence of a categorical and general trend, which can be written as follows:

$$\Delta Y_{t} = \lambda Y_{t-1} + \sum_{j=1}^{k} P_{j} \Delta Y_{t-j} + U_{t}$$

Where the results were as follows:

Table (8) Dickey-Fullier Extended Test of the first model, no aesthetic fixed capital (without fixed, and without general direction)

	The null hyp	othesis: the ti	ime series con	tains a unit root (the	
	series is unsta	able)			
		Exogenous	: None		
Lag Length	: 0 (Automatic	c - based on S	IC, maxlag=4)		
Prob.*	Test value				
0.0123	-2.595577	7 Extended Dickey-Fuller Test Statistic			
				Critical values for	
	-2.685718		1% level	the test:	
	-1.959071		5% level		
	-1.607456		10% level		
The					
probability					
value of the	e	standard	parameter		
test	Test t	error	value	variable	
0.0178	-2.595577	0.056515	-0.146690	S3(-1)	
				The coefficient of	
-412.9075	Mean depend	lent var	0.184313	determination	
				Corrected	
				determination	
1307.899	S.D. depende	nt var	0.184313	coefficient	
				standard error of	
17.03521	Akaike info c	riterion	1181.234	the regression	
				The sum of the	
				squares of the	
17.08500	Schwarz crite	erion	26510973	remainders	

17.04493	Hannan-Quinn criter.		-169.3521	Log likelizhood
				Durbin-Watson
			1.751404	stat

According to Table (8) it is noted that the calculated value of the expanded Dickey-Fuller test for the parameter slowing money supply for one period of time amounted to (-2.595577) greater than the tabular value under a significant level (1%,5%,10%), so we reject the null hypothesis that says The presence of a unit root, which is an indication of the stability of the time series

Dickey-Fullier Expanded Test of National Income Variable

For the purpose of applying the expanded Dickey-Fuller test for the national income series, the following stages have been passed:

1- Estimation of the third model, which includes a fixed boundary and time trend:

$$\Delta Y_{t} = a + \beta t + \lambda Y_{t-1} + \sum_{j=1}^{k} P_{j} \Delta Y_{t-j} + U_{t}$$

So that:

 ΔY_{t} : The first difference for the variable gross national income

 Y_{t-1} National income is decelerating one time period

Where the results were as follows:

CONCLUSIONS:

From the results found in the body of the search, the following points were reached:

1 -The money supply variable is stable at the first difference level of the time series, which means that the series is integrated of the first degree.

2 -The variable of gross fixed capital formation is stable at the level of the time series, and this means that the series is integrated of degree zero.

3 -The national income variable is stable at the level of the time series, and this means that the series is integrated of degree zero.

4 -The GDP variable is stable at the first difference level of the time series, and this means that the series is integrated of the first degree.

5 -The contribution of the independent variable (money supply) to investment is negative. The negative sign of the parameter of the independent variable (money supply) is consistent with the economic logic of the modern quantity theory (Chicago School) Friedman and his supporters that the growth of money supply should be proportional to the growth of GDP, and that So as not to cause imbalances in the economy, and consequently, its negative impact on investment. The growth of money supply in Iraq was not commensurate with the growth of GDP, because an increase in money supply could affect some other economic factors, and some of these factors have an impact on the economy, leading to an increase in interest rates and thus to a reduction in investment. The price level and the expected effect of inflation. 6 -The contribution of the independent variable (GDP) to investment is negative.

RECOMMENDATIONS:

Among the conclusions reached, the researchers recommend the following:

1 -It is necessary to test the stability of the time series before performing any regression in order to avoid the problem of falling into a false regression.

2- Using other tests for the stability of time series, including the Phelps-Peron test.

REFERENCES

- Al-Bashir, Abdel-Karim "The profit rate as an alternative to the interest rate in the treatment of the financial and economic crisis, a theoretical study" 2007_ Faculty of Economics and Management Sciences, Hassiba Benbouali University, Algeria.
- Al-Jarrah, Muhammad bin Abdullah "Sources of Inflation in the Kingdom of Saudi Arabia during the Period (1970-2007)" 2011 Standard Study _ College of Business Administration, King Saud University
- -Ben-Kana, Ismail, "A standard study of some Algerian macroeconomic variables (between 1970-2001) and their prediction (for the period between: 2002-2006) 2005 Master's thesis in Economic Sciences Faculty of Law and Economic Sciences Department of Economics.
- Al-Janabi, Nabil Mahdi, Karim Salem "The relationship between crude oil prices and the dollar exchange rate using joint integration and causality (Granger) during the period (2009-2010)" 2011, College of Administration and Economics University of Qadisiyah, Iraq.
- Al-Kiswani, Dr. Mamdouh Al-Khatib, "Demand for Money in Syria Using Error Correction and Co-Integration Model" 2001 College of Administrative Sciences - King Saud University.
- Al-Musbeh, Imad Al-Din, "Factors Affecting Unemployment in the Syrian Arab Republic, An Applied Study Using the Methodology of Joint Integration" 2008, Egypt.
- Al-Majali, Khaled Shalashel, "The impact of economic variables on the volume of foreign investment in the Amman Stock Exchange during the period (1994-2009)" 2011, an analytical study, Faculty of Economics, Damascus University, Syria.
- Al-Mandalawi, Abbas Yahya Khader. "The Possibilities of Monetary Policies in Encouraging Domestic Investment in Iraq" 2004, Master's Thesis in Economic Sciences, College of Administration and Economics -University of Baghdad
- -Al-Hajhuj, d. Hassan bin Rafdan bin Hassan "Determinants of Inflation in the Countries of the Cooperation Council for the Arab States of the Gulf - The Method of Joint Integration" King Faisal University -Kingdom of Saudi Arabia.

Dr. Ehab "Economic Feasibility Study and Project Evaluation"

- Shaarawy, Dr. Samir Mustafa, "Introduction to Modern Analysis of Time Series" 2005, College of Science - King Abdulaziz University, Saudi Arabia.
- Sheikhid. Muhammad, "Econometrics Methods Lectures and Applications" 2012, Jordan, Dar Al-Hamid for Publishing and Distribution.

- -Saleh, Ouyaba, "The impact of the change in the exchange rate on the economic balance - a case study of Algeria 1990-2009" 2011 People's Democratic Republic of Algeria, Ministry of Higher Education and Scientific Research - University Center in Ghardaia.
- Abdel Qader Attia, Dr. Abdel Qader Mohammed. "Hadith in Econometrics between Theory and Practice" 2004, Makkah Al-Mukarramah
- Ministry of Planning Central Statistical Organization Directorate of National Accounts, Central Bank of Iraq, General Directorate of Research and Statistics.