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ABSTRACT 

The tuning parameter selection strategy for penalized estimation is crucial to identifying a 

model that is both interpretable and predictive. However, popular strategies (e.g., wavelet 

shrinkage is proposed for effectively handle in these issues) tend to select models with more 

predictors than necessary. This paper proposes a simple estimate for tuning parameters based 

on wavelet shrinkage of penalized method (Ridge and Elastic-Net) compared with the classic 

penalized method depending on the tail probability behavior of the response variables and using 

simulation experiments for (10%) data with contamination and real data. The comparing results 

between the proposed method with a classic penalized method based on the statistical criterion 

(MAE and MSE). It was concluded that the wavelet shrinkage of penalized method gives the 

best results and a more accurate classical method for all simulations and real data based on 

(MAE and MSE) criteria. 

 

INTRODUCTION: 

The penalized least squares method has been repeatedly shown to be an 

appealing regression shrinkage and selection method. This process differs from 

standard approaches to variable selection in that it identifies significant 

variables while also estimating regression coefficients. The estimators produced 

are as efficient as the Oracle estimator. Furthermore, non-significant variables 

are eliminated by estimating their coefficients as recent related research 

includes (Van der Kooij, A.J., 2007). 
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However, the effectiveness of this system is dependent on selecting the tuning 

parameter that is included in the penalty functions correctly. There are many 

other approaches for selecting the tuning parameter. They are determined by 

using a suitable criterion. The desirable selector can be obtained by minimizing 

this criterion in relation to the tuning parameter. The most well-known current 

methods are data-driven approaches such as cross validation (CV) and extended 

cross validation (GCV) (T. T. Cai and H. H. Zhou., 2009). 

 

(Donoho and Johnstone., 2011) devised the wavelet threshold approach, which 

reconstructs signals using thresholding coefficients. The denoising effect of the 

wavelet threshold approach is determined by the threshold. If the specified 

threshold is too high, some useful information is filtered out; if the threshold is 

too low, some noise is preserved. Many academics researched threshold 

determination approaches in try to tackle this challenge. Donoho and Johnstone 

proposed a universal threshold by evaluating a normal Gaussian noise model; 

Tao et al. (Z. Tao, H.-M. Zhao, X.-J. Zhang, and D. Wu.,2011) enhanced the 

universal threshold and suggested that it be altered adaptively when the scale 

changes. The flaw in these systems is that a universal threshold is frequently 

imposed. The issue in these systems is that the universal threshold is frequently 

set too high, which might result in excess of relevant information. Chang et al. 

(S. G. Chang, B. Yu, and M. Vetterli.,2000) proposed a Bayesian threshold 

method based on the assumption that the wavelet coefficients followed a 

generalized Gaussian distribution; (Lu and Loizou Y. Lu and P. C. Loizou., 

2011) assumed the coefficients followed a Gaussian distribution and presented 

a new threshold based on maximum a posteriori probability; Li et al. assuming 

the coefficients followed a generalized Gamma distribution, we proposed a 

threshold technique based on Bayesian shrinkage. All of these methods are 

based on a specific coefficient distribution, although the distribution may not be 

applicable to a specific signal. (Donoho and Johnstone.,1994) suggested a new 

minimax criterion-based threshold technique. However, this method requires 

prior knowledge about the original signal, which is difficult to obtain in practice. 

Based on the concept of parameter estimates, Stein's unbiased risk estimate 

(SURE) criterion and generalized cross validation (GCV) criterion (M. Jansen 

and A. Bultheel.,1999) were presented. SURE criterion is an unbiased estimate 

of the minimized mean square error (MSE) criterion, and GCV criterion is a 

biased estimate of the minimized MSE criterion. (Cai and Zhou.,2009) 

suggested a SURE-based data-driven threshold determination approach. (Autin 

and von Sachs., 2012) proposed a novel approach by integrating various 

threshold rules. 

 

In this study, penalized methods with wavelet shrinkage are proposed for 

effectively handling of these issues. The effectiveness of the proposed methods 

is examined through simulation studies and applications in the real data.  

 

Penalized Methods: 

 

Penal methods have appeared in recent years and have gained wide popularity 

among statisticians, as these methods are an important key to performing the 

selection of variables and estimating parameters simultaneously, so many 

penalty methods have been proposed through which a penalty constraint is 
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added to the regression models (Tutz, G. and Ulbricht, J., 2009). The goal of 

adding the penalty restriction is to control the complexity of the model and 

provide a criterion for the selection of variables, by introducing some 

restrictions on the transactions that impose on some transactions that their value 

is equal to zero (Helwig, N.E., 2017). 

 

The penalty constraint quantity works to balance the variance and bias in the 

chosen model. When the penalty amount is small, a larger number of 

explanatory variables are selected with a small bias, but the variance will be 

large, on the contrary, a large penalty amount causes few explanatory variables 

to be selected with a large bias but the variance will be lower. Therefore, a good 

choice of penalty amount leads to improving the prediction accuracy and ease 

of understanding and interpretation of the model, 

 

In general, it is known as Penalized Linear Regression (PLR); as follows: 

 

       𝑃𝐿𝑅(𝛽; 𝜆) = (𝑌 − 𝑋𝛽)𝑇(𝑌 − 𝑋𝛽) + 𝜆 ∑ 𝑃𝜆(|𝛽𝑗|)
𝑝
𝑗=1                 (1)   

 

where the amount  𝑃𝜆(|𝛽𝑗|) represents the penalty term, which is a function of 

coefficients, and (𝜆) represents the tuning parameter, since (𝜆 ≥ 0),   and that 

the penalty limit depends entirely on the value of (𝜆) as it controls the amount 

of shrinkage of parameter values. When the value is (𝜆 = 0)  then we get the 

estimations of the Ordinary Least Squares method (OLS). Conversely, as the 

value of (𝜆)  increases, the number of variables excluded from the model will 

increase (Wood, Simon., 2006). 

 

In partial linear regression, estimates of the model parameters are found using 

this equation: 

 

𝛽𝑃𝐿𝑅
^ = 𝑎𝑟𝑔𝑚𝑖𝑛(𝑌 − 𝑋𝛽)𝑇(𝑌 − 𝑋𝛽) + 𝜆 ∑ 𝑃𝜆(|𝛽𝑗|)

𝑝
𝑗=1           (2) 

 

The two researchers (2001) (Jianging Fan and Li) suggested that a good penalty 

term should produce an estimator that has three properties, first, (unbiasedness) 

when the variable is unbiased for large real parameters. Second, (sparsity) 

makes small estimators exactly zero. Finally, the estimated continuity is 

(continuous) in the data to avoid instability in the model prediction. 

 

There are many penalized methods that have been proposed and their 

characteristics studied, including Ridge, Least Absolute Shrinkage and 

Selection Operator (LASSO), Elastic-Net, Bridge and other methods. 

 

Ridge Regression: 

 

Regression modeling with associated explanatory variables presents a 

challenging problem when selecting variables and estimating parameters. The 

reason for this is, in the case of multicollinearity, the data matrix does not have 

enough information to distinguish the effect of a correlated variable versus a 

variable another related. In choosing a variable, selection methods tend to 

choose arbitrarily for one of the variables associated and does not take into 
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account the significance of the specified variable. In addition, the existence of 

plurality linearity impairs prediction accuracy by amplifying the variance of 

parameter estimates, which may lead to removing significant coefficients from 

the model (Van der Kooij, A.J., 2007). 

 

The ridge regression method was proposed by (Hoerl and Kennard) (1970) and 

it is considered one of the oldest penalty methods, as it received great attention 

because of its ability to overcome the problem of multicollin-   earity without 

removing the explanatory variables from the regression model. The Ridge 

Regression method reduces the variance in the coefficient estimates by adding 

a penalty quantity that follows the rule (L2 - norm) to the sum of the squares of 

the residuals, as the penalty quantity reduces the regression coefficients. 

 

Penalty linear regression is defined using the ridge term as follows: 

 

𝑃𝐿𝑅(𝛽; 𝜆)𝑅𝑖𝑑𝑔𝑒 = (𝑌 − 𝑋𝛽)𝑇(𝑌 − 𝑋𝛽) + 𝜆 ∑ 𝛽𝑗
2𝑝

𝑗=1                (3)   

 

So that the penalty term  (∑ 𝛽𝑗
2)

𝑝
𝑗=1    represents the (L2 - norm) rule the estimates 

of the parameters in the penalty regression model can be obtained from equation 

(1.7) as follows:     

   

𝛽̂𝑃𝐿𝑅
𝑅𝑖𝑑𝑔𝑒

= (𝑋𝑇𝑋 + 𝜆𝐼)−1𝑋𝑇𝑦                           (4) 

 

Since I is the identity matrix with capacity P and 𝛌 is the positive shrinkage 

parameter, adding 𝛌 to the main diameter elements in the (𝑋𝑇𝑋) information 

matrix reduces the variance of the OLS estimates with the addition of an amount 

of bias to it. When (𝛌=0) the OLS estimators are obtained from Equation (4). 

Although the resulting estimations from using the ridge term are biased, the 

ridge regression method improves the prediction accuracy. 

  

In ridge regression, the coefficients are gradually reduced towards zero, but they 

do not make them equal to zero at all, and then all the variables remain in the 

model, as a result, it is not possible in the ridge regression method to choose the 

variables and therefore the resulting linear regression model cannot be easily 

explained, especially if the number of Large explanatory variables. 

 

Elastic Net Regression: 

 

Elastic net regression combines the penalty terms of ridge and lasso 

regression.  When fitting models with elastic net, we minimize the function. Zou 

and Hastie (2005) have proposed the Elastic Net and developed an algorithm, 

called LARS-EN, based on the efficient LARS algorithm, to overcome the 

Lasso limitations of selecting at most N predictors and of selecting only one 

predictor from a group of highly correlated predictors. For the Elastic-Net the 

regression coefficients are estimated as 

 

𝛽̂𝑃𝐿𝑅
𝐸𝑛𝑒𝑡 = (𝑋𝑇𝑋 + 𝜆2𝐼)−1 (𝑋𝑇𝑦 −

𝜆1

2
 𝑠𝑖𝑔𝑛(𝐵𝑗

𝑂𝐿𝑆))        (5) 
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Wavelets Shrinkage: 

 

Wavelets are functions that satisfy certain mathematical requirements and are 

used in representing data or other functions. This idea is not new. 

Approximation using superposition of functions has existed since the early 

1800’s, when Joseph Fourier discovered that he could superpose sines and 

cosines to represent other functions. However, in wavelet analysis, the scale that 

we use to look at data plays a special role. Wavelet algorithms process data at 

different scales or resolutions. If we look at a signal with a large “window,” we 

would notice gross features. Similarly, if we look at a signal with a small 

“window,” we would notice small features (Antoniadis A.,2007) The result in 

wavelet analysis is to see both the forest and the trees, so to speak. This makes 

wavelets interesting and useful. For many decades, scientists have wanted more 

appropriate functions than the sines and cosines which comprise the bases of 

Fourier analysis, to approximate choppy signals . By their definition, these 

functions are non-local (and stretch out to infinity) (Donoho .D.L, and 

Johnostone, I, M., 1995). They therefore do a very poor job in approximating 

sharp spikes. But with wavelet analysis, we can use approximating functions 

that are contained neatly in finite domains. Wavelets are well-suited for 

approximating data with sharp discontinuities. The wavelet analysis procedure 

is to adopt a wavelet prototype function, called an analyzing wavelet or mother 

wavelet. Temporal analysis is performed with a contracted, high-frequency 

version of the prototype wavelet, while frequency analysis is performed with a 

dilated, low-frequency version of the same wavelet. Because the original signal 

or function can be represented in terms of a wavelet expansion (using 

coefficients in a linear combination of the wavelet functions), data operations 

can be performed using just the corresponding wavelet coefficients. And if you 

further choose the best wavelets adapted to your data, or truncate the 

coefficients below a threshold, your data is sparsely represented. This sparse 

coding makes wavelets an excellent tool in the field of data compression. Other 

applied fields that are making use of wavelets include astronomy, acoustics, 

nuclear engineering, sub-band coding, signal and image processing, 

neurophysiology, music, magnetic resonance imaging, speech discrimination, 

optics, fractals, turbulence, earthquake-prediction, radar, human vision, and 

pure mathematics applications such as solving partial differential equations.

  

Daubechies Wavelets: 

   

Ingrid Daubechies invented what are called compactly supported orthonormal 

wavelets, one of the brightest stars in the world of wavelet research, thus making 

discrete wavelet analysis practicable. The Daubechies family wavelets are 

written as dbN, where N is the order, db is the family name of the wavelet 

(Dhamija, A., 2013). 

 

Advantages: 

 

 a) The Daubechies wavelets are orthogonal in nature which is energy 

preserving.  

b) compactly-supported, orthogonal wavelets. 
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Fejer-Korovkin: 

 

Fejer-Korovkin It’s a wavelet filter more symmetric than the Daubechies filters, 

but less soft. This filter has a wide application on the approximation theory, and 

a frequency response adequate as the support increases (Varanis, M. and 

Pederiva, R., 2017). 

 

Thresholding:  

  

Thresholding is the simplest method of non-linear wavelet denoising, in which 

sub dividing the wavelet coefficient in to two sets, one of which represents 

signal while the other represents noise (Hamad.A.S., 2010) . 

  

There are different rules to apply the thresholds of the wavelet coefficients, and 

several different methods for choosing a threshold value exist such as: 

 

Universal Threshold: 

  

Donoho and Johnstone (1994) proposed universal threshold, which is given by 

 

𝜂𝑈 = 𝜎̃(𝑀𝐴𝐷)√2𝑙𝑜𝑔𝑁                   (6) 

  

Where N is the data length series, and 𝜎̃(𝑀𝐴𝐷) is the estimator of standard 

deviation of details coefficients, which is estimated as: 

 

𝜎̃(𝑀𝐴𝐷) =
𝑀𝐴𝐷

0.6745
                (7) 

 

MAD is the median absolute deviation of the wavelet coefficients at the finest 

scale, defined to be. 

 

𝑀𝐴𝐷 = 𝑚𝑒𝑑𝑖𝑎𝑛 [|𝑊1,0|, |𝑊1,1|, … , |𝑊
1,𝑁

2
−1

|]      (8) 

 

So that 𝑊1,𝑡 represents the element of the 𝑊1 while the constant is the median 

of the standard normal distribution. 

 

 "For a sequence of independently and identically distribution (IID) 𝑁(0, 𝜎2) 

random variables, as 𝑁 → ∞, so the universal threshold shrank all noise 

coefficients to zero with high probability, but part of the real underlying might 

also be lost. Thus, the universal threshold tends to over smoothing. 

 

𝑃[𝑚𝑎𝑥(|𝑊𝑛| ≤ 𝜂𝑈)] → 1               (9) 

  

Note, that the combination of the universal threshold and soft thresholding is 

suggested by Donoho and Johnstone under the name Visu Shrink. 
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An important feature of visu shrink is that it "guarantees" a noise- free 

reconstruction although by doing so it usually under fits the data by setting the 

threshold too height. 

 

SURE Threshold  

 

The sure threshold proposed by (Donoho and Johonstone ,1995), which based 

upon the minimization of stein's unbiased risk estimator[23][47]. 

  

In sure threshold specifies a threshold value of 𝜂𝑗 for each level j of the wavelet 

coefficients, then for the soft threshold estimator we have. 

 

𝑆𝑈𝑅𝐸(𝜂, 𝑊) = 𝑁 − 2 ≠ {𝑗: |𝑊𝑗| ≤ 𝜂} − ∑ 𝑚𝑖𝑛(|𝑊𝑗|, 𝜂)

𝑑

𝑗=0

      (10) 

 

Where {𝑊𝑗: 𝑗 = 1,2, … , 𝑑} be a wavelet coefficients in the jth level, and  

 

 Then, select 𝜂𝑆  that minimizes SURE (𝜂, 𝑊). 

 

𝜂𝑆 = arg min 𝑆𝑈𝑅𝐸 (𝜂, 𝑊) 

 

Donoho and Johonstone (1995) recommended that the SURE threshold is in fact 

hybrid thresholding approach, utilissing both the universal and SURE threshold. 

The set of coefficients is judged to be sparsely represented, then the universal 

threshold is used, otherwise the SURE threshold is used to select a threshold 

level. 

 

The level j is considered to be sparse if  

 

𝑊𝑆𝑆(𝜂) ≤ 1 +
(log 𝑁𝑗)

3
2

√𝑁𝑗

                                    (12) 

 

Where 𝑁𝑗 is the number of wavelet coefficients in the level j, and 𝑊𝑆𝑆(𝜂)  is the 

sum of square of wavelet coefficients. 

 

𝑊𝑆𝑆(𝜂) = ∑ 𝑊𝑗,𝑡
2                                      (13) 
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Proposed Method: 

  

The proposed method is use of wavelet shrinkage for estimate tuning parameter 

in Penalized linear regression, which depends on the small wave filter after 

treating it with a threshold rule, and then using the outputs to find the inverse 

(DWT) and get denoise data, and then use this data modified for Wavelet 

shrinkage for Penalized methods (Wavelet for Ridge and Elastic-Net) in 

estimating a multiple linear regression model when heavy-tailed distributions 

and de-noising values are present parameters and calculating (MSE and MAE) 

comparing it with the classical Penalized methods. 

 

By shrinking the detail coefficients, the inverse DWT is applied to the shrunken 

set of coefficients. Wavelet shrinkage for each level, we will have a threshold. 

The Fixed form threshold (i.e.; Universal threshold) technique is considered 

from equation (6) and put in the place of the tuning parameter from equations 

(4 and 5), which is as follows: 

 

Tuning parameter estimating by: 

 

Universal threshold    𝑈 =   

 

𝛽̂𝑃𝐿𝑅
𝑅𝑖𝑑𝑔𝑒

= (𝑋𝑇𝑋 + U 𝐼)
−1

𝑋𝑇𝑦         (14) 

 

𝛽̂𝑃𝐿𝑅
𝐸𝑛𝑒𝑡 = (𝑋𝑇𝑋 + U 𝐼)

−1

 (𝑋𝑇𝑦 −

U

2
 𝑠𝑖𝑔𝑛(𝐵𝑗

𝑂𝐿𝑆))          (15) 

 

SURE threshold   𝑊𝑆𝑆(𝜂) = 𝜆 

 

𝛽̂𝑃𝐿𝑅
𝑅𝑖𝑑𝑔𝑒

= (𝑋𝑇𝑋 + )(Wss ∗ I)
−1

𝑋𝑇𝑦         (16) 

 

𝛽̂𝑃𝐿𝑅
𝐸𝑛𝑒𝑡 = (𝑋𝑇𝑋 + )(Wss ∗ I)

−1
 (𝑋𝑇𝑦 −

)(Wss

2
 𝑠𝑖𝑔𝑛(𝐵𝑗

𝑂𝐿𝑆))          (17) 

 

Depending on the wavelet matrix such as (db1) and (fk4), we get the values of 

(observations of the processed dependent variable), which will be used with the 

independent variable in estimating the parameters of the multiple linear 

regression model. 

 

Finally, as shown in picture (2), the methodologies utilized to estimate and 

compare Penalized linear regression performance in Wavelet shrinkage for 

penalized methods (wavelet Ridge and Elastic-Net) will be described: 
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Diagram (1): Proposed Method (Wavelet shrinkage for penalized methods) 

 

 

Application Part: 

 

This Part included a practical comparison of the methodologies employed in the 

estimation process represented by Wavelet shrinkage for penalized methods and 

classical penalized methods. The relative efficiency, which is represented by the 

Tests of provide penalized conditions 
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mean square of error and mean absolute error, was determined to present with 

a review of the most essential strategy of regularization for coefficients 

regression. 

 

Simulation Study: 

 

To implement the simulation experiments, different levels of the following 

factors were used sample sizes n, Where three sample sizes were used, namely, 

the simulation experiment included many cases, as three sizes of samples were 

used, which are (50, 100, 200) when the number of parameters (k) is equal 

to(11), and another three sample sizes are (100, 150, 300) when the number of 

parameters (k) is equal to(51), and we contaminate (10) of (𝑒𝑖) vector without 

modifying explanatory variables such that this contaminated values can cause 

outliers. Here original (𝑒𝑖) values are taken from a standard normal distribution 

with (zero mean and standard deviation equal to 1and 8) and generated (10%) 

values from the Laplace distribution with ( location =2, scale=1). These values 

produce outliers and contaminate the data by using this formula 𝑓(𝑥) =
(1 − 𝑝) ∗ 𝑓1(𝑥) + 𝑝 ∗ 𝑓2(𝑥). The explanatory variables are independent of a 

normal distribution (with a mean equal to zero and a standard deviation equal 

to one). When the number of parameters (𝑘) is equal to (3 -5 0 0 -0.5 0 0 0.5 5 

0 0) where q=5 are numbers of non- zero parameters, and the second case (K) 

equal to (2 4 0 -6 0 3 0 1 0 0.5 0 -8 5 0 3 -0.5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -5) where q=11 are numbers of non-zero 

parameters. For the frequency of (1000) iterations of the assumed regression 

model and each of the cases shown in tables (1, 2, 3, 4) a comparison was made 

between the methods used in the estimation process represented by a method 

Wavelet shrinkage for Penalized methods (Wavelet for Ridge and Elastic-Net) 

with Classic Penalized methods (Ridge and Elastic-Net) and parameters can 

now be defined for the default model. The comparison was made to calculate 

the relative efficiency, which represents the mean square of error (MSE) and 

mean absolute error (MAE). 

 

Table 1: The average (MAE and MSE) values for classic and proposed methods.   

 

W
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M
et
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d
 

T
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M
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h
o
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(σ = 1)  (k=11)   (10% Contaminate) 

n =50 n =100 n =200 

MAE MSE MAE MSE MAE MSE 

db1 Rd Universal 0.9616 1.9541 0.9483 1.6843 0.9277 1.5413 

SURE 1.0022 2.1151 0.9993 1.8554 0.9698 1.6763 

EN Universal 0.9950 2.1143 0.9536 1.7141 0.9284 1.5478 

SURE 1.1058 2.5982 1.0203 1.9513 0.9751 1.7024 

Fk4 Rd Universal 0.9609 1.9519 0.9467 1.6782 0.9254 1.5340 

SURE 1.0022 2.1145 0.9998 1.8572 0.9697 1.6760 

EN Universal 0.9934 2.1062 0.9516 1.7066 0.9259 1.5398 

SURE 1.1050 2.5891 1.0209 1.9536 0.9751 1.7020 
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Classic    

                  Ridge 1.4945 4.5948 1.1857 2.5760 1.0528 1.9488 

                  Elastic Net 3.1967 14.6203 3.1985 12.9662 3.2035 12.3272 

 

Table 2: The average (MAE and MSE) values for classic and proposed methods.   
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(σ = 8)  (k=11)   (10% Contaminate) 

n =50 n =100 n =200 

MAE MSE MAE MSE MAE MSE 

db1 Rd Universal 5.7266 66.3029 6.0630 64.9929 6.2352 64.6483 

SURE 5.7420 66.6571 6.0747 65.2331 6.2432 64.8121 

EN Universal 5.7416 66.6204 6.0660 65.0576 6.2358 64.6631 

SURE 5.7812 67.4997 6.0818 65.3860 6.2449 64.8497 

Fk4 Rd Universal 5.7262 66.2880 6.0624 64.9802 6.2350 64.6449 

SURE 5.7435 66.6834 6.0747 65.2350 6.2432 64.8142 

EN Universal 5.7404 66.5932 6.0655 65.0426 6.2356 64.6592 

SURE 5.7821 67.5266 6.0820 65.3868 6.2449 64.8521 

Classic    

                  Ridge 5.8509 69.0303 6.0979 65.7469 6.2533 65.0051 

                  Elastic Net 6.3155 79.8423 6.6088 76.6624 6.7668 75.8330 

 

Table 3: The average (MAE and MSE) values for classic and proposed methods      

 

W
av

el
et

 

M
et

h
o
d
 

T
h
re

sh
o
ld

  
  

M
et

h
o
d
 

(σ = 1)  (k=51)   (10% Contaminate) 

n =100 n =150 n =300 

MAE MSE MAE MSE MAE MSE 

db1 Rd Universal 0.6729 1.4908 0.7735 1.4803 0.8555 1.4673 

SURE 0.6748 1.4993 0.7762 1.4899 0.8579 1.4745 

EN Universal 0.7142 1.6987 0.7772 1.5046 0.8551 1.4692 

SURE 1.1378 4.4286 0.8836 1.9670 0.8691 1.5260 

Fk4 Rd Universal 0.6729 1.4909 0.7736 1.4804 0.8555 1.4673 

SURE 0.6749 1.4994 0.7762 1.4899 0.8579 1.4746 

EN Universal 0.7148 1.7017 0.7773 1.5046 0.8551 1.4692 

SURE 1.1523 4.5345 0.8798 1.9501 0.8690 1.5256 

Classic    

                  Ridge 3.6320 42.2253 2.9381 20.5330 1.9262 7.0710 

                  Elastic Net 2.2043 11.4712 2.2042 8.8484 2.2091 7.3172 
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Table 4: The average (MAE and MSE) values for classic and proposed methods   
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(σ = 8)  (k=51)   (10% Contaminate) 

n =100 n =150 n =300 

MAE MSE MAE MSE MAE MSE 

db1 Rd Universal 4.4992 65.2412 5.2248 65.0795 5.8381 64.5659 

SURE 4.5076 65.4817 5.2338 65.2986 5.8425 64.6662 

EN Universal 4.5098 65.5536 5.2263 65.1184 5.8383 64.5695 

SURE 4.6429 69.5224 5.2584 65.2931 5.8460 64.7325 

Fk4 Rd Universal 4.4992 65.2410 5.2248 65.0800 5.8380 64.5656 

SURE 4.5076 65.4829 5.2338 65.2977 5.8425 64.6672 

EN Universal 4.5098 65.5557 5.2263 65.1192 5.8383 64.5692 

SURE 4.6425 69.5056 5.2575 65.8959 5.8461 64.7347 

Classic    

                  Ridge 6.0924 119.1600 6.0655 87.6014 6.1057 70.5770 

                  Elastic Net 4.8877 76.8281 5.5427 73.1492 6.1133 70.6422 

     

Results Interpretation from Tables (1,2,3, and 4): 

 

A- Show the case (10%) that contaminate the proposed method for wavelet 

types (db1 and Fk4) the average (MAE) and (MSE) is less than the classic 

method. 

B- Noted the proposed method of threshold method (Universal) for the average 

of (MAE) and (MSE) less than from the case of the proposed method for 

threshold methods (SURE). 

C- Show the proposed method for Penalized method (Ridge) is better than 

(Elastic-Net) according to the criterion of (MAE) and (MSE). 

D- They found the result increased the sample sizes then decreased the values 

of (MAE and MSE). 

E- In most cases for sample sizes, the wavelet type (FK4) is shown to be better 

than the wavelet type (db1) according to the average (MAE and MSE) except 

in the case of (σ = 1) and (k=51) the wavelet type (db1) is better than the wavelet 

type (FK4). 

 

Application for Real Data: 

  

To take advantage of the proposed penalized methods data related to studies 

was used by The prostate cancer data come from a study by Stamey et al. (1989) 

that examined the correlation between the level of prostate specific antigen and 

a number of clinical measures in men who were about to receive a radical 

prostatectomy. The study had a total of 64 observations of male patients aged 

from 41 to 79 years. The response variable is lpsa - the logarithm of prostate-

specific antigen. The covariates are as follows: 
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 1. lcavol - log (cancer volume) 

 2. lweight - log (prostate weight) 

 3. age  

4. lbph - log (benign prostatic hyperplasia amount) 

5. svi - seminal vesicle invasion  

6. lcp - log (capsular pEnetration)  

7. gleason - Gleason score  

8. pgg45 - percentage Gleason scores 4 or 5 As Let us fit linear model relating 

the log of PSA (lpsa) to the remaining eight variables plus a constant column, 

that is, 

 

𝑙𝑏𝑝ℎ = 𝛽0 + 𝛽1𝑙𝑐𝑎𝑣𝑜𝑙 + ⋯ + 𝛽8𝑝𝑔𝑔45 + 𝜖𝑖 

 

 

Table 5: Estimated coefficients and ( MAE and MSE) values for classic and proposed methods 

of threshold method (Universal) for prostate cancer.  

 

Term Proposed Method  

(Ridge) 

Classic Proposed Method 

(Elastic -Net) 

Classic 

db1 FK4 db1 FK4 

Intercept 4.75 2.96 1.03 -0.17 -0.25 1.07 

lcavol 0.47 0.45 0.40 0.38 0.39 0.34 

lweight 0.22 0.19 0.55 0.41 0.45 0.21 

age -0.04 -0.03 -0.03 -0.02 -0.02 -0.14 

lbph 0.04 0.22 0.17 0.17 0.17 0.22 

svi -0.1 -0.16 -0.29 -0.32 -0.3 -0.06 

lcp -0.06 -0.07 -0.09 -0.01 -0.08 -0.05 

gleason -0.05 -0.04 0.28 0.22 - 0.17 

pgg45 - 0.01 0.07 - - 0.01 

MAE 0.4509 0.4238 5.2838 0.4238 0.4096 0.7826 

MSE 0.4289 0.3784 35.6354 0.3784 0.3420 0.9777 

 

Table 6: Estimated coefficients and (MAE and MSE) values for classic and proposed methods 

of threshold method (SURE) for prostate cancer. 

 

Term Proposed Method  

(Ridge) 

Classic Proposed Method 

(Elastic -Net) 

Classic 

db1 FK4 db1 FK4 

Intercept 9.45 9.23 1.03 0.8 0.79 1.07 

lcavol 0.78 0.78 0.40 0.24 0.24 0.34 

lweight -0.34 -0.32 0.55 -0.07 -0.07 0.21 

age -0.09 -0.09 -0.03 0.02 0.02 -0.14 

lbph 0.55 0.55 0.17 0.13 0.13 0.22 

svi 0.74 0.74 -0.29 -0.51 -0.51 -0.06 
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lcp 0.07 0.07 -0.09 0.02 0.02 -0.05 

gleason -0.34 -0.32 0.28 - - 0.17 

pgg45 0.06 0.06 0.07 0.01 - 0.01 

MAE 0.6554 0.6551 5.2838 0.5219 0.5205 0.7826 

MSE 0.5944 0.5939 35.6354 0.4825 0.4802 0.9777 

 

From Table (5and 6) where (k=9) for sample sizes (64) we note the following:  

 

A- Show the proposed method for wavelet types (db1 and Fk4) the average 

means absolute error (MAE) and mean square error (MSE) is less than the 

classic method. 

B- Shows the proposed method of threshold method (Universal) for wavelet 

type (Fk4) the average of mean absolute error (MAE) and mean square error 

(MSE) for (Elastic-Net) less than from wavelet type (db1 and FK4) for (Ridge).  

 

CONCLUSION: 

First: Through Simulation study: 

 

1- In the case (10%) contaminates where (σ =1 and 8) and (k=11 and k=51) 

for all cases sample sizes (50, 100, 200) and (100, 150, 300) the proposed 

method for wavelet types (db1 and Fk4) is better than the classic method 

according to the criterion of (MAE) and (MSE). 

2- In most of the case (10%) contaminate shows the proposed method of 

threshold method (Universal) for wavelet type (Fk4) according to the criterion 

of (MAE) and (MSE) less than from (SURE) of wavelet type (db1). 

3- The results explained that whenever increasing the sample size leads to 

an increase in the values of (MAE) and a decrease in the values  of  (MSE). As 

increasing the standard deviation values lead to an increase in the values of 

(MAE and MSE). 

4- Most of the results showed that the (Ridge) method is better than 

(Elastic-Net) according to the criterion for (MAE and MSE). 

Second: Through Real Data: 

 The proposed method better than the classic method according to the 

criterion for (MAE and MSE) and variables selection. As well as (Elastic-Net) 

method is the best method from (Ridge). 
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