
ARCHITECTURE OF MONITOR API TO HANDLE INTEGRATION DATA PROBLEM IN DATABASE-MICROSERVICE PJAEE, 17 (10) (2020) 

1422 

 

 
 

ARCHITECTURE OF MONITOR API TO HANDLE INTEGRATION DATA 

PROBLEM IN DATABASE-MICROSERVICE 
 

Esa Fauzi1*, Yani Iriani2 

1,2Department of Informatics Engineering, Faculty of Engineering, Universitas Widyatama, 

Bandung, Indonesia 

*1esa.fauzi@widyatama.ac.id 

Esa Fauzi, Yani Iriani. Architecture of Monitor Api To Handle Integration Data 

Problem In Database-Microservice-- Palarch’s Journal Of Archaeology Of 

Egypt/Egyptology 17(10), 1422-1428. ISSN 1567-214x 

Keywords:microservice, database-per-service, monitor. 

 

 

ABSTRACT 

Microservice is one of the architectural trends in software development. Microservices divide 

normally large applications into smaller, more independent parts. One of these small parts 

can be a function that communicates with the database (database-per-service). However, in 

microservice architecture, sometimes not only one database is used. In one transaction of the 

microservice architecture sometimes requires inputting into multiple databases. This can be a 

problem if in one of the input processes there is an error in one of the services, causing loss of 

data integration between databases. Based on this problem we proposed a system to monitor 

the transaction process. The monitor that we have developed will check the data that is 

entered into the database at each microservice service. If there is an error, the monitor will 

roll back the failed transaction. 

 

Keywords: microservice, database-per-service, monitor. 

 

INTRODUCTION 

Microservice is one of the trends in software architecture design which is an 

approach with the concept of modularization. Each module is divided into 

small sections as an independent system. So that each module in the 

microservice has a light coupling level [1]. Applications that developed with 

this architecture have advantages including being easy to develop, deploy, 

maintain and scale compared to a single application.[2].But from all of these 

advantages, this microservice architecture has disadvantages including 

complex deployments and autonomy[3]. This autonomy is essentially a 

positive aspect but achieving this with data integration is a big challenge. 

 

mailto:*1esa.fauzi@widyatama.ac.id


ARCHITECTURE OF MONITOR API TO HANDLE INTEGRATION DATA PROBLEM IN DATABASE-MICROSERVICE PJAEE, 17 (10) (2020) 

1423 

 

In a microservice architecture, the database is often made into a service or it 

can be called database-per-service [4]. By making it like this, the transaction 

process into the database becomes more independent because it is not affected 

by other things. However, if there are multiple databases-per-service, data 

integration may be a problem. 

 

In a single request to a system with a microservice architecture, there are 

usually many transactions in many databases. However, if an error occurs in 

the process, another service usually has to be canceled. Based on this problem, 

a monitor is proposed to supervise the transaction process so that if an error 

occurs, the data integration can be maintained. 

 

RELATED WORKS 

If an error occurs in a request to the microservice application, it is necessary to 

know which service link is fault. Therefore, monitoring has an important role 

in microservices. Monitoring in a microservice can be run in multiple levels: 

hardware level, network level, system level, microservice application level, 

and service access level [2]. In our own research, monitoring is carried out at 

the application level because it is specifically aimed at monitoring data 

integration. However, there are also several microservice monitoring at other 

levels, including: 

Benjamin Mayer conducted research to build microservice monitors [5]. The 

microservice monitor is built in the form of a dashboard based on stakeholder 

needs by retrieving metrics system data in the form of CPU, memory 

consumption, workload, and error rate. 

Marcello Cinque developed the MetroFunnel monitoring application to 

monitor request-response messages between microservices [6]. The steps 

taken in MetroFunnel are sniffing the request-response REST message. The 

advantage is that there is no need to change the microservice application itself. 

Shang-Pin Na developed a version-based monitoring microservice [7]. The 

proposed scheme is based on versioning, monitoring and visualization 

(VMAMV), as well as metrics with statistical process control (SPC) methods. 

 

ANALYSIS AND DESIGN 

 



ARCHITECTURE OF MONITOR API TO HANDLE INTEGRATION DATA PROBLEM IN DATABASE-MICROSERVICE PJAEE, 17 (10) (2020) 

1424 

 

 
Fig. 1.Microservice with Database-per-Service 

 

The monitor that is built is intended to handle data mismatch issues in the 

database-as-service API. In a request, there are usually many transactions into 

the database at the same time. If one of the transactions has an error, the other 

transaction must also be corrected or canceled. The monitor built into our 

development will be formed as a service / API. We initially had 2 approaches 

for designing this API monitor: 

 

Busy-Waiting Approach 

The first approach is to use the busy-waiting method[8]which makes the 

monitor check data changes stored on each database-as-service. This monitor 

will check every incoming data content along with the time the data is 

inputted. If there is a change in data in the same time frame, it can be said that 

it is a new transaction. However, if in the new transaction there is a mismatch 

between each database-per-service, it means that the monitor will consider the 

transaction to be a failure. If it is considered a failed transaction, the monitor 

will roll back the data. 

 



ARCHITECTURE OF MONITOR API TO HANDLE INTEGRATION DATA PROBLEM IN DATABASE-MICROSERVICE PJAEE, 17 (10) (2020) 

1425 

 

 
Fig. 2. Monitor with busy-waiting approach 

 

After we analyze this approach has advantages and disadvantages, including: 

 

Advantages: 

The monitor becomes more independent and is not affected by other APIs 

because it only pays attention to the database in the microservice architecture 

Good for handling data transactions in the form of new entries 

 

Disadvantages: 

Difficult to detect and search transactions for data changes or deletions. 

 

 We did not implement this approach because it has disadvantages as 

mentioned. 

 

Sleep & Wake Up Approach 

This approach uses the concept of sleep and wake up; sleep, wake up, idle in 

the process [9]. When there is no transaction process, the API monitor is idle. 

However, when there is a transaction process, the monitor will be awakened to 

check the data transactions that occur. 

This approach requires reports from other database APIs to find out whether 

the transaction processing to the database has been carried out or not. So in the 

process, all APIs before and after making transactions into the database are 

required to report to the API monitor. If all database APIs report a successful 

transaction, it means that the entire transaction to the database is considered 



ARCHITECTURE OF MONITOR API TO HANDLE INTEGRATION DATA PROBLEM IN DATABASE-MICROSERVICE PJAEE, 17 (10) (2020) 

1426 

 

successful. However, if it fails, the monitor will roll back the incoming 

transactions so that data integration can be maintained. 

 

 
Fig. 3. Monitor with sleep & wakeup approach 

 

From the results of our analysis this approach has several advantages & 

disadvantages: 

 

Advantages: 

• Can detect changes in the form of input, change, or deletion 

 

Disadvantages: 

• It takes longer because there must be a transaction process report from all 

database APIs 

 

We apply this approach because even though it is a little longer, it can 

maintain data integration. 

 



ARCHITECTURE OF MONITOR API TO HANDLE INTEGRATION DATA PROBLEM IN DATABASE-MICROSERVICE PJAEE, 17 (10) (2020) 

1427 

 

 
Fig. 4. Class Diagram Monitor API 

 

In development, we made this monitor in the form of an API. There are 2 main 

classes and 1 interface. The main class of this monitor is used to handle 

checking the list of microservice transactions to the database, giving responses 

to the API gateway, and receiving reports from the microservice. In addition, 

there is a support class for recording transaction lists into a temporary 

database. 

 

CONCLUSION 

Monitoring is one way to maintain data integrity in microservice applications. 

Monitoring can also be used to control data transaction errors in the database 

(for example rolling back) such as in the application we developed. The 

microservice monitor that we have developed can maintain the integration of 

data in a transaction to multiple databases. But it has a disadvantages because 

each microservice has to report to the monitor so it takes a little more time. 

Therefore, for further development we plan to change the reading pattern of 

the monitor data by sniffing the request / response messages. From this 

message, the monitor will check the data in the database within a certain 

period of time if there is an error response and will make data corrections or 

rollbacks of failed transactions. 

 

REFERENCES 

[1] P. Jamshidi, C. Pahl, N. C. Mendonca, J. Lewis, and S. Tilkov, 

“Microservices: The journey so far and challenges ahead,” IEEE 

Softw., vol. 35, no. 3, pp. 24–35, 2018. 

[2] Y. Jiang, N. Zhang, and Z. Ren, “Research on intelligent monitoring 

scheme for microservice application systems,” Int. Conf. Intell. 

Transp. Big Data Smart City, pp. 791–794, 2020. 

[3] K. Gos and W. Zabierowski, “The Comparison of Microservice and 

Monolithic Architecture,” IEEE 16th Int. Conf. Perspect. Technol. 

Methods MEMS Des., pp. 150–153, 2020. 

[4] M. S. S. Kumar and D. S. Mallikarjuna, “Database-per-Service for E-

Learning System with Microservice Architecture,” Int. Conf. Smart 

Technol. Smart Nation, pp. 352–355, 2017. 

[5] B. Mayer and R. Weinreich, “A dashboard for microservice monitoring 

and management,” IEEE Int. Conf. Softw. Archit. Work., pp. 66–69, 

2017. 



ARCHITECTURE OF MONITOR API TO HANDLE INTEGRATION DATA PROBLEM IN DATABASE-MICROSERVICE PJAEE, 17 (10) (2020) 

1428 

 

[6] M. Cinque, R. Della Corte, R. Iorio, and A. Pecchia, “An Exploratory 

Study on Zeroconf Monitoring of Microservices Systems,” 14th Eur. 

Dependable Comput. Conf., pp. 112–115, 2018. 

[7] S. P. Ma, I. H. Liu, C. Y. Chen, J. T. Lin, and N. L. Hsueh, “Version-

Based Microservice Analysis, Monitoring, and Visualization,” Asia-

Pacific Softw. Eng. Conf., pp. 165–172, 2019. 

[8] R. Höttger, B. Igel, and O. Spinczyk, “On reducing busy waiting in 

autosar via task-release-delta-based runnable reordering,” Des. Autom. 

Test Eur., pp. 1510–1515, 2017. 

[9] J. Haimour and O. Abu-Sharkh, “Energy efficient sleep/wake-up 

techniques for IOT: A survey,” IEEE Jordan Int. Jt. Conf. Electr. Eng. 

Inf. Technol., pp. 459–464, 2019. 

 


