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ABSTRACT 

Particle filter (pf) method is thebest technique for indoor localization estimation and object 

tracing in smart building by the assistance of active or passive RFID reader and tags and Wi-

Fi far more devices are used. Which can be accustomed gather indoor user position and the 

densityare calculated particle filter algorithm. The most use of Pf is employed used to 

estimate the nonlinear vector space Here the particle are going to be measure the particle 

densityambiguously. Once the item is measure on a 1 vector state then it store after moves the 

identical object to different one vector state, it’ll store and update will make some trouble this 

trouble is overcome by using Sequential important sampling method (SIS).Here this paper is 

implement supported on sequence sampling dimension problem on this paper is updating 

measurement of the particle filter with resampling method. At just one occasiondetect an 

ambiguous dimension update is detected, the proposed method flights the measurement 

update at the time step and feats the measurement later when the particle distribution 

becomes tolerable for the dimension inform. This plan delivers a preparation to the paradox 

problem to get the correct current position estimate with lower covariance. Numerical 

imitation is presented to prove effectiveness and routine of the proposed method. Compared 

to other methods, like the quality particle filter, the auxiliary particle filter, the mixture 

particle filter, and also the receding-horizon Kalman filter, the proposed method shows better 

performance in terms of root-mean-square error and projected covariance. Here we define the 

unclear measurement update that results in increase in covariance and weight of the particles. 

The unknown measurement update causes larger dispersal of particles and provides a less 

assured approximation. So we are able to use the particle filter method in this work to get 

essential result instead of kalmanfilter (Kf). Kf is generally utilized in linear indoor vector 

space to estimate the article. 
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INTRODUCTION 

The development of data formed via IoT has played a key role on 

the big data landscape. Big data can be categorized affording to three 

aspects: (a) volume, (b) variety, and (c) velocity. These types were first 

introduced by Gartner to define the essentials of big data contestshuge 

occasions are accessible by the skill to analyse and exploit huge amounts of 

IoT data, including applications in smart cities, smart transport and network 

systems, energy smart meters, and remote patient healthcare monitoring 

devices.  IoT has made big data analytics stimulating because of the 

dispensation and collection of data through different sensors in the IoT 

environmentIoT offers a platform for sensors and devices to connect 

flawlessly within a smart environment and enables information sharing 

across platforms in a expedient manner. The current variation of different 

wireless technologies places IoT as the next radical technology by 

promoting from the full opportunities offered by the Internet technology. 

IoT has saw its recent acceptance in smart cities with interest in developing 

smart systems, such as smart office, smart retail, smart agriculture, smart 

water, smart transportation, smart healthcare, and smart energy. 

In big data technique collect the data from different communication 

media like our day to day using devices.Severalkind of unstructured data. 

Those areconverting the structure data. The conversion data are store in a 

data storage pool the store data called by using some query and do some 

tasks. 

Uses of particle filter 

Its improved presentation in extremely nonlinear situation and 

aptitude to resolve a given global localization problem with no gen about 

the primary position.Particle filter is algorithmically more translucent and 

meet than extendedkalman filter. It is robust against modelling and 

computational error. 

Particle filter has some problem associated with loss of multiplicity 

among the samples ensuing in failures of state estimate and large 

approximation errors.in propose limited impulse response filter detects the 

particle failure and recovers the failed particle filter by rearranging the 

particle filter using the output of an auxiliary fixed impulse response in the 

Angle of arrived signal. 

 PROBLEM DESCRIPTION  

A. Bayesian Approximation 

Images of nonlinear Bayesian approximation can be pledge in many 

works. A nonlinear stochastic scheme can be articulated by a discrete-time 

of approximation procedure model  

 

 

𝑥𝑡 + 1 = 𝑓𝑡(𝑥𝑡, 𝑤𝑡)         (1) 

 

And a measurement new model  
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𝑧𝑡 = ℎ𝑡(𝑥𝑡, 𝑣𝑡) (2) 

 

 

Where xt is mention system state trajectory and zt is the newly 

measurement trajectory at time lengthmentionast. The deterministic 

purposes and narrate the preceding state to the present state and the existing 

state to the dimension vector, respectively. wt is the process noise trajectory 

and VT is the measurement noise trajectory 

 

 Here the Bayesian estimation probability problem function density is 

denoteas𝑝(𝑥𝑡|𝑧1: 𝑡). The prior density of the state at time k via the 

Chapman–Kolmogorov equation is shown below 

 

𝑝(𝑥𝑡|𝑧1: 𝑥 − 1) = ʃ 𝑝(𝑥𝑡 − 1|𝑧1: 𝑡 − 1)𝑑𝑥𝑡 − 1  (3) 

 Here 𝑝(𝑥𝑡 − 1||𝑧1: 𝑡 − 1)is the previous objectdensity, by a 

dimensiontimezt, the inform phase is to get the later thickness via Bayes’ 

rule 

𝑝(𝑥𝑡|𝑧1: 𝑡) =
p(zt|xt)p(xt|z1:t−1)

p(zt|z1:t−1)
   (4) 

From all the input data we could normalized the necessary data  

𝑝(𝑧𝑡|𝑧1: 𝑘 − 1) = ∫ 𝑝(𝑧𝑡|𝑥𝑡)𝑝(𝑥𝑡|𝑧1: 𝑘 − 1)𝑑𝑥𝑡(5) 

     The recursive proliferation of the advanced bulk is anintangible solution, 

which cannot be strong-minded logically. One can action the PF to fairly 

precise the optimal Bayesian solution. 

 

B. Particle Filter  

This paper give elaborate design is to the particle filtering algorithm 

with sequential importance resampling (SIR). The SIR is usually used in 

particle filtering algorithms used to resample the particle filter. 

The subsequent probability is denoted by a set of haphazardly chosen 

weighted particles as  

𝑝(𝑥𝑡|𝑧1: 𝑡) ≈ ∑ ⍵𝑡
𝑖ʃ(𝑥𝑡 − 𝑥𝑡

𝑖𝑁

𝑖=1
)                                           (6) 

 Here δ represents the Dirac delta function, N mention the number of 

particles, ⍵𝑡
𝑖 estimate the importance weight of the ith particle, 𝑥𝑡

𝑖 mention 

the state of the jth particle, and 𝑧1: 𝑡 mention a set of measurements 

obtained until time t. here mention the pseudo code of SIR algorithm is 

described in given below algorithm1. The particles are drawn by the 

analytical conditional transition density 𝑝(𝑥𝑡|𝑥𝑡 − 1) and the resultant 

particles of the estimate step are shows as 𝑥̃𝑡
𝑖 for i=1……..N. 

Algorithm 1:  Resampling Particle Filter 

1: Procedure RPF({𝑥𝑡−1
𝑖 }𝑖=1,

𝑁 𝑧𝑡) 
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2: for i=1 : n do 

3: Draw 𝑥̃𝑡
𝑖~𝑝(𝑥𝑡|𝑥𝑡−1

𝑖 ) 

4: Calculate ⍵̃𝑡
𝑖 = (𝑥𝑡|𝑥̃𝑡

𝑖 ) 

5 Calculate sum of particle weights ⍵𝑠𝑢𝑚  = ʃ𝑗=1
𝑁 ⍵̃𝑡

𝑗
 

6: for i =1 : N do 

7: Normalize ⍵𝑡
𝑖  = 

⍵̃𝑡
𝑖

⍵𝑠𝑢𝑚 
 

8: Calculate CDF P using {⍵𝑡
𝑖 }𝑖−1

𝑁  

9: for i = 1 : N do 

10:  𝑢 ~ 𝑈(0,1)  

11:  𝑗 = 𝑃−1(u) 

12: 𝑥𝑡
𝑖 =  𝑥̃𝑡

𝑗
 

 Each particle sample can be drive from𝑝(𝑥𝑡|𝑥𝑡 −1) by developing a 

process noise sample ⍵𝑡−1
𝑖  ~ 𝑝(⍵𝑡−1)and setting  

𝑥̃𝑡
𝑖 = 𝑓𝑡(𝑥𝑡−1,

𝑖 ⍵𝑡−1
𝑖 )Where 𝑃(⍵𝑡−1)means the likelihood mass function 

of⍵𝑡−1. Their weights are updated by using the view function𝑝(𝑧𝑡|𝑥𝑡), 

which is a predefined dispersal of the dimension given the preceding state. 

Later normalizing the position weights, the SIR PF calculates the collective 

distribution function (CDF) of the weights and resamples the particles 

founded on the CDF. 𝑝 − 1Means the opposite function of the CDF 𝑝 by 

which the rearranged index 𝑗is got based on the random number 𝑢 drawn 

from the uniform distribution𝑈(0,1). After the resampling, the resultant 

particles have identical weights as⍵𝑘
𝑖 = 1/𝑁, for i = 1, ..., N. The prior 

particles{𝑥𝑡−1
𝑖 }𝑖=1

𝑁  and the later particles {𝑥𝑡−1
𝑖 }𝑖=1

𝑁 are used to calculate the 

state approximation and its covariance as 

 𝑥̂𝑡
− =

1

𝑁
∑ 𝑥̃𝑡

𝑖

𝑁

𝑖=1

𝐶̂𝑡
− =

1

𝑁
∑(𝑥̃𝑡

𝑖

𝑁

𝑖=1

−  𝑥̂𝑡
−)(𝑥̃𝑡

𝑖 −  𝑥̂𝑡
−)𝑇𝑥̂𝑡

+ 

=
1

𝑁
∑ 𝑥̃𝑡

𝑖𝑁
𝑖=1 𝐶̂𝑡

+ =
1

𝑁
∑ (𝑥̃𝑡

𝑖𝑁
𝑖=1 −  𝑥̂𝑡

+)(𝑥̃𝑡
𝑖 −  𝑥̂𝑡

+)𝑇                                   (7) 

 

Where the superscripts “−” and “+” denote estimates gained by the 

prior and the posterior particles, correspondingly. 

C. Ambiguous Measurement Update 

Surge in the particle covariance after the dimension update phase is 

often observed when there exist ambiguous points where the estimated 

capacities are identical to the measurement taken at the true state. This 

phenomenon usually happens around modulation points of the nonlinear 

functionℎ(𝑥𝑡) , where the sign of the gradient of the function changes. 
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Since the function value near an inflection point has its identical foil on the 

opposite side, the measurement update may result in a discrete posterior 

distribution for some cases. 

Here, we describe the ambiguous measurement update as the 

measurement update that leads to surge in covariance of the particles. The 

ambiguous measurement update producing larger dispersal of particles 

provides a less confident estimate and it may cause chaining effect on 

subsequent steps of the recursive filter. In the next section, we provide a 

strategy to cope with the problem. 

 

 Fig. 1. One-step filtering with different prior distributions 

PROPOSED ALGORITHM 

 As talked in Section II, an ambiguous measurement update results in a 

scatter posterior distribution with a less self-assured position estimate. The 

objective of the proposed algorithm is to get more confidence of the current 

estimate when an ambiguous measurement update happens and therefore 

realize better filter performance. 

Algorithm 1: Sequential importance Resampling Particle Filter (SIR) 

1: Procedure SIR({𝑥𝑡−1
𝑖 }𝑖=1,

𝑁 𝑧𝑡) 

2: for i=1 : n do 

3: Draw 𝑥̃𝑡
𝑖~𝑝(𝑥𝑡|𝑥𝑡−1

𝑖 ) 

4: Calculate ⍵̃𝑡∗
𝑖 = (𝑥𝑡|𝑥̃𝑡

𝑖 ) 

5  Calculate sum of particle weights ⍵𝑠𝑢𝑚  =  ʃ𝑗=1
𝑁 ⍵̃𝑡

𝑗
 

6: for i =1 : N do 

7: Normalize ⍵𝑡∗
𝑖  = 

⍵̃𝑡
𝑖

⍵𝑠𝑢𝑚 
 

8: Calculate CDF P using {⍵𝑡∗
𝑖 }𝑖−1

𝑁  

9: for i = 1 : N do 

 

ℎ(𝑥) 

𝑥𝑎− 𝑥∗ 
𝑥𝑏− 

 



EFFICENT USE OF PARTICLE FILTER TO MEASURE THE MEASUREMENT AMBIGUITY PROBLEM IN INDOOR 
SPACE 

 

PJAEE, 17 (9) (2020)  

5836 
 

10:   𝑢 ~ 𝑈(0,1)  

11:  𝑗 = 𝑃−1(u) 

12:  𝑥𝑡∗
𝑖 =  𝑥̃𝑡

𝑗
 

Algorithm 3: Proposed Algorithm. 

fori =1 : N do 

Initialize 𝑥0
𝑖 ∼p(𝑥0) 

For k = 1 : K do 

[{ 𝑥𝑡
𝑖}𝑖=1 ,

𝑁 {𝑥̃𝑡
𝑖}𝑖=1 ,

𝑁 {⍵̃𝑡
𝑖 }𝑖=1

𝑁 ]= SIR{ 𝑥𝑡−1
𝑖 }𝑖=1 ,

𝑁 𝑧𝑡 

if |𝐶̃𝑡
+| < |𝐶̃𝑡

−| then 

if A≠ Ø then 

 for∀𝑧𝑎 Є A do 

[{ 𝑥𝑡∗
𝑖 }𝑖=1 ,

𝑁 {⍵̃𝑡∗
𝑖 }𝑖=1

𝑁 ] = XYZ ({𝑥𝑠
𝑖}𝑖=1 ,

𝑁 { 𝑥𝑡
𝑖}𝑖=1 ,

𝑁 {⍵̃𝑡
𝑖 }𝑖=1

𝑁 , 𝑧𝑎 ) 

if |𝐶̃𝑡∗
+| < |𝐶̃𝑡

+| then 

{ 𝑥𝑡
𝑖}𝑖=1 ,

𝑁 = { 𝑥𝑡∗
𝑖 }𝑖=1 ,

𝑁 {⍵̃𝑡
𝑖 }𝑖=1

𝑁  = {⍵̃𝑡∗
𝑖 }𝑖=1

𝑁  

A≠ Ø 

{𝑥𝑠
𝑖}𝑖=1 ,

𝑁 = { 𝑥𝑡
𝑖}𝑖=1

𝑁  

Else 

{ 𝑥𝑡
𝑖}𝑖=1 

𝑁 = {𝑥̃𝑡
𝑖}𝑖=1

𝑁  

Insert 𝑧𝑘  into A 

 The proposed algorithm requires extra computation associated to the 

standard PF to deal with the ambiguous measurement update. As described 

in Algorithm 3, determination of the ambiguous measurement update is 

done by comparing magnitude of the prior and posterior density. The later 

covariance can be attained after a measurement update, including a 

resampling stage, and any ambiguous measurement is used again later as an 

XYZ. Therefore, the proposed algorithm is supposed to execute one more 

measurement update stage per an ambiguous measurement 

B. Other Filtering Techniques  

 In demonstrating the effectiveness of the proposed algorithm, it is 

worth to compare the filter behaviour to those of other filtering methods 

which may provide similar results: the auxiliary particle filter (APF), 

theMixture MPF, and the receding-horizon Kalman filter (RHKF).  

1) Auxiliary Particle Filer:  

 The auxiliary particle filter is mainly used for resampling technique, 

which is used to provide the accurate soluction from the failure particle.was 
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introduced in as a variant of the standard SIR filter. The auxiliary particle 

filter is mainly introduce the purpose of avoid the particle failure and error 

state estimation. 

 2) Mixture Particle Filter:  

 The MPF was proposed for dealing with multimodal distribution in 

particle filtering in global localization problems.it contain mainly used for 

large area estimated. The MPX algorithm is used to produce the particle on 

each state for estimate the covariance value. Each particle cluster is given a 

mixture weight and the cluster is maintained and updated by clustering 

algorithm such as the mean-shift clustering technique. The resampling 

techniques is used to estimate the error particle based on the particle 

weights and the mixture weights the MPF is compare with particle filter its 

take some amount of time for calculation. 

3) Receding-Horizon Kalman Filter: 

 It can be viewed as a practice of reordering technique whose 

established realizations comprise batch processing, smoothing, and 

forward/backward processing. Thus, it would be interesting to compare the 

proposed algorithm to another measurement reordering solution to see if the 

problem is unique to the PF. The RHKF would be a good example here 

since it is a recursive estimator where at each time step an optimization 

problem is solved by using a time window of measurements to obtain the 

state estimates. The Kalman filtering framework is extended to include a 

receding horizon with an augmented state vector and an augmented error 

covariance matrix. It is known that the RHKF provides more robust and 

accurate results than the standard extended Kalman filter.it is batter to 

perform batch processing. 

 

Figure 1:Time history of RMSE 
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 Figure 1 represents the case with relatively small process noise. and  object 

detection space are measured 

 

Figure:2Time history of RMSE 

In the fig 2 we get the RMSE of the each pf, Apf, OOSM ,mpf all the 

resampling values are calculated between 50- 150. 

 

 

Figure : 3Time history of covariance 

    In fig 3 On the other hand, the PF-based algorithms showed relatively 

robust behaviour. The APF still hurt from the big process error and biases 

as in Case 2. The OOSMPF did not show exceptional performance in terms 

of RMSE for all cases. Instead, the OOSMPF provided more confident 

estimates than the PF and the MPF. 
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Figure :4Time history of RMSE 

 In Fig 4 the MPF shows alike behaviour as the PF for all the cases in 

relations of the RMSE and the covariance. This is because the ambiguous 

measurement update occurs occasionally due to local ambiguity and, 

therefore, the modes are not definitely separated. 

 

Figure:5Time history of RMSE 

Fig. 5 shows the time history of the RMSE, (12), of each filtering algorithm 

based on its execution time and small process noise. 
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Figure 6: estimated covariance of RMSE 

In this fig(6) is shows the estimate calculated covariance. We observed that 

the PF and the MPF show similar RMSE behaviour as the OOSMPF. 

Therefore, we present RMSE plots to show different results of the RHKF, 

the APF, and the OOSMPF, omitting those of the PF and the APF. The 

average RMSEs during 50–150 s after the converging track for all the 

algorithms On the other hand, the OOSMPF successfully dealt with the 

ambiguous measurements and proare presented in Table II. It was 

observed that, with small process noises, the RMSE of the PF-based 

algorithms did not reveal any momentous difference among each other. The 

APF provided smaller covariance’s than other PF-based algorithms as also 

discussed in the literature [16]. However, the RHKF has much smaller 

covariance, which is not consistent with its estimation performance. This is 

because the linearized measurement model in the Kalman filter-based 

algorithm failed to approximate the surrounding terrain, which contains 

many inflection points. Thus, the RHKF provided tainted state estimates, 

whereas the filter was very certain with the filtering results. Unlike the 

RHKF, the PF-based algorithms have larger covariance since they faced 

less certain measurement updates by considering terrain profile covered by 

the prior density. 

 

 

Figure 8 : performance of RMSE 
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Fig 8. The sampling shows the best performance among the filtering 

algorithms. The average RMSE of the RHKF, but the filter shows 

comparatively unstable behaviour, which is seen to be due to model 

nonlinearity. The APF is degraded while its estimated covariance is still 

slighter. If the process noise is large, a single point cannot describe well. In 

such cases, the use of the APF results in poor performance. On another one 

method of OOSM particle method is completely dealt with unknown 

measurements and provided more confident and accurate state estimates 

 

 Figure 9: Ambiguous measurements of Time 

In Fig. 9, the time examples of occurrences of the ambiguous 

measurements, which produced larger posterior covariance than the prior 

covariance by definition, in a period of a MPF run are marked as circles. 

The dotted line denotes probability of having at furthermost one mode with 

the critical bandwidth evaluated by the mode estimation method. In this 

method low value of probability value depend on existing multimodal 

distribution Fig. 9 demonstrates that the covariance upsurge does not 

essentially induce multimodal posterior distribution. Multimodal deliveries 

were often originate during the run but not upheld for a long stretch. If this 

is the case where the dimension ambiguity occurs for a long stretch, the 

MPF would be a better practice 

 

CONCLUSION 

In the measurement we will evaluate the target size by the help of particle. 

Each and every measurements is not give the actual location of the object 

but it will give some approximate location .so this failure avoid by the help 

of sampling method get the actual position of the individual object 

Compared to the RHKF and other methods based on the SIR PF, the 

proposed method provided better performance in terms of RMSE and 

estimated covariance. Theoretical investigation on the measurement 

ambiguity and object detection at various environment as a future work. 
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