
A novel approach for Pre-validation, Auto resiliency & Alert Notification PJAEE, 17 (9) (2020)

 for SVN to Git Migration using IoT devices

7131

A Novel Approach for Pre-Validation, Auto Resiliency & Alert Notification

for SVN To Git Migration Using Iot Devices

Vinay Singh,1 Alok Aggarwal,2 Narendra Kumar3 A. K. Saini

1 1531, Johnson Dr Apt, #732, Buffalo Grove, Illinois 60089, USA, vsbuild7@gmail.com

2 School of Computer Science, University of Petroleum & Energy Studies, Dehradun, India,

alok.aggarwal@ddn.upes.ac.in
3 Icfai University, Jaipur, India, drnk.cse@gmail.com

3 Icfai University, Jaipur, India, aksaini@iujaipur.edu.in

Vinay Singh,1 Alok Aggarwal,2 Narendra Kumar3 A. K. Saini: A novel approach for Pre-validation,

Auto resiliency & Alert Notification for SVN to Git Migration using IoT devices -- Palarch’s

Journal of Archaeology Of Egypt/Egyptology 17(9). ISSN 1567-214x.

Keywords - Subversion (SVN), Git, Version control system, Trunk, Tag, Translational settings,

Author Mapping, IoT, Node MCU, ESP8266 Wi-Fi SoC.

Abstract

Software development is getting a transition from centralized version control systems like SVN to

decentralized version control systems like Git due to lesser efficiency of former in terms of branching,

fusion, time, space, merging, offline commits & builds and repository etc. None of the available SVN-Git

migration approaches has following four capabilities; identification and validation of a complete

development project structure, SVN & Git SSH connectivity validation, SVN users & Git author mapping

validation and remote Git Server space validation. It results in an extensive longer time for migration

from SVN to Git along with incomplete migration. In this work a holistic, proactive and novel approach

has been proposed for pre-migration validation from SVN to Git using IoT devices which covers all these

four major limitations of the available SVN to Git migration approaches. Many scripts have been

developed and executed for pre-migration validation and migration preparation which overcomes the

problem of incomplete migration. Ten sample software projects have been taken for analysis for SVN to

Git migration and results show that with the proposed approach the time consumed during migration from

SVN to Git came down to about six times.

Keywords - Subversion (SVN), Git, Version control system, Trunk, Tag, Translational settings, Author

Mapping, IoT, Node MCU, ESP8266 Wi-Fi SoC

mailto:drnk.cse@gmail.com

A novel approach for Pre-validation, Auto resiliency & Alert Notification PJAEE, 17 (9) (2020)

 for SVN to Git Migration using IoT devices

7132

1. Introduction

There are various version control systems in use like Subversion (SVN), Mercurial,

CVS, Git and many more. Out of these Git is most widely used version control system

(VCS) [1]-[4]. Git has a variety of advance features like distributed nature, offline

commits facility, fast processing, staging feature and many more. In recent few years,

Git has been the first choice as version control of small to large IT corporate world

due to its better features [5]-[8].

Git is having a share of 77% of total VCS followed by SVN with a share of 13.5% [9].

Majority of software industries are getting a migration from SVN to Git. Only few

migration tools are available in software industry but these too lack in many features

like lack of identifying the empty directories as pre-migration check, failover

capabilities during migration due to network failure or disk space issue and detailed

report generation as post migration steps. Issues observed in SVN to Git migration for

about 50,000 software project migrated from 2013 to 2019 are shown in figure 1. It

was observed that majority of these were never been successful in first step due to

missing project structure validation, weak SSH connectivity issue or sometimes

improper mapping between SVN user and Git author.

None of the available SVN-Git migration approaches has following four capabilities;

identification and validation of a complete development project structure, SVN & Git

SSH connectivity validation, SVN users & Git author mapping validation and remote

Git Server space validation. It results in an extensive longer time for migration from

SVN to Git along with incomplete migration. In this work a holistic, proactive and

novel approach has been proposed using IoT devices for pre-migration validation from

SVN to Git which covers all these four major limitations of the available SVN to Git

migration approaches. Many scripts have been developed and executed for pre-

migration validation and migration preparation which overcomes the problem of

incomplete migration. Ten sample software projects have been taken for analysis for

SVN to Git migration.

Figure 1. SVN-Git Migration rate and issues found over time [1]-[9]

A novel approach for Pre-validation, Auto resiliency & Alert Notification PJAEE, 17 (9) (2020)

 for SVN to Git Migration using IoT devices

7133

Rest of the paper is organized is follows. Section 2 gives in brief the major work done

by earlier researchers in the migration process of SVN to Git VCS. Proposed approach

is given in detail in section 3 covering various steps of pre-validation methodology,

pre-migration validation and migration preparation, SVN & Git SSH connectivity

validation and space validation, and SVN users and Git author mapping validation &

detailed report generation. Results of the proposed approach are given in section 4

along with conclusion.

2. Related Work

In SVN, many earlier studies focused on commit size distribution. Commit size can

follow power laws [10]-[14], Pareto model [15], Petro-distribution [16] etc. Commits

have been categorized based on various features mainly size and comment [17]-[19].

Dynamics of commit behavior with respect to open source software developer’s have

been investigated for SVN in [20]. Four open source software projects on Apache.org

have been considered for the above investigation. An empirical study on inter-commit

times in Subversion on two projects written in Java has been performed in [10]. It is

observed that in both POI and Tomcat distribution of commit intervals follows power

laws. Further, two major factors that cause very long period of inactivity are active

committer’s individual behavior of long vacations.

For a centralized VCS, a commit signing mechanism has been proposed in [21].

Proposed mechanism support various features like it allows working over a subset of

repositories and working on disjoint set of files. Collaborative vocabulary

development has been focused in many earlier works [22]-[26]. Git’s applicability for

collaborative vocabulary development has been investigated in [22]. Git4Voc has been

proposed which explores the adoptability of Git to vocabulary development. It is

shown that by using vocabulary-specific features, implementation of Git hooks can go

beyond the plain functionality of Git. LHCb migration from SVN to Git has been

presented in [27]. Issues related to specific requirements of LHCb have been

addressed. Technical details of migration of large non-standard SVN repositories have

also been addressed. It has been claimed that this migration from SVN to Git has

resulted in increased productivity in terms of new projects & number of contribution

and code quality in terms of testing and reviews. A mechanism for classification and

extraction of changes is proposed in [28]. Various challenges and confusions related to

Git have been reported in [29] followed by recommendations for dealing the same.

General concepts of centralized and distributed VCS have been discussed in [30] and

how these concepts are implemented by SVN and Git VCS.

3. Proposed Approach

None of the available SVN-Git migration tools has following four capabilities;

identification and validation of a complete development project structure, SVN & Git

A novel approach for Pre-validation, Auto resiliency & Alert Notification PJAEE, 17 (9) (2020)

 for SVN to Git Migration using IoT devices

7134

SSH connectivity validation, SVN users & Git author mapping validation and remote

Git Server space validation. As a part of project structure SVN supports empty

repositories which may be essentially required as part of software development, but

Git does not like lib (libraries), dist. and target folders. In case of Java, .Net or any

project structure having a source code repository with few empty folder structures then

these empty folders will never be migrated to Git. These empty directories might have

essential part of the project development structure which are needed to download the

maven-based dependencies at compile or run time. For this purpose in this work many

shell scripts have been developed for identifying all directories/subdirectories which

are empty and need a place holder for complete SVN-Git migration and generates an

email and SMS to project administrator about the total numbers of repositories and

branches that are auto recovered and rectified.

SSH communication need to be established to pre-validate the connection between

SVN & Git and also to confirm the same to the root user. For this purpose in this work

NodeMCU is used. For migration of revision histories as meta-data, SVN authors

should be mapped with Git authors before migration take place. Proposed work gives

a mechanism by which SVN authors are mapped with Git authors before migration.

By this way revision histories are not lost. Migration usually requires terabytes of disk

space. Proposed work measures the total space acquired by SVN projects including

various repositories, revisions, software code, SVN logs and meta-data. It makes it

possible to login to remote Git server with same user and identifies the sufficient space

availability else it generates an alert and email notification to the project administrator

to take necessary action well in advance. Holistic view of SVN-Git migration is shown

in figure 2.

Pre-requisites:

Pre-requisites for pre-migration validation and migration preparation are as follows.

• Install Oracle JRE 1.8 or newer (LTR release)

• Install SVN Mirror add-on migration tool in Git BitBucket

• Sufficient space should be available on the BitBucket server as per the size of SVN

repositories

• SVN repo URLs must be accessible from the BitBucket server

• Install NodeMCU compatible with ESP8266 Wi-Fi SoC

Dependencies:

Dependencies for pre-migration validation and migration preparation are as follows.

• License procurement for SVN Mirror add-on migration tool from SubGit organization

• Count of SVN users to be migrated to Git

Steps of Pre-validation Methodology:

Step 1: Environment preparation

A novel approach for Pre-validation, Auto resiliency & Alert Notification PJAEE, 17 (9) (2020)

 for SVN to Git Migration using IoT devices

7135

 : JDK installation

 : SubGit Tool Installation and configuration settings

 : SSH connection setup between SVN & Git

 : NodeMCU ESP8266 Wi-Fi SoC installation

Step 2: Project structure mapping validation and correction

Step 3: Branch level mapping validation and auto-correction

Step 4: Translation settings validation & auto-correction

Step 5: Adjust author level mapping validation & auto-correction

Step 6: SSH connection validation & alert generation using NodeMCU (ESP8266 Wi-

Fi SoC)

Step 7: Exit with email notification

Step 8: Git server space validation using NodeMCU (ESP8266 Wi-Fi SoC)

Step 9: Alert/Notification generation

Step 10: Exit with email notification

Figure 2. A holistic view of SVN-Git migration

Create git
repository

Install SVN mirror
add on

Setup NodeMCU

(ESP8266 Wi-Fi
SoC)

Branch Mapping
Adjust

translation
settings

Adjust authors
mapping

Adjust
connection

settings
Start import

Post Import
validation

User training SVN read only
SVN

decommision

A novel approach for Pre-validation, Auto resiliency & Alert Notification PJAEE, 17 (9) (2020)

 for SVN to Git Migration using IoT devices

7136

3.1 Pre-migration validation and migration preparation

The project structure need to be validated in SVN to identify if there is any empty

directory in all repositories. Next SVN repositories need to be validated for empty

project structures. It is also required to check and calculate the total revision histories

in SVN & total size of SVN and compare the space available in Git server. The admin

user must have SSH connectivity to transfer the data from SVN to Git server. For this

all repositories in SVN need to be checked out for finding the empty folders.

Methodology used in this work for SVN to Git migration is shown in figure 3.

Figure 3. Methodology of SVN to Git migration

Algorithm: Project structure identification and correction in SVN project

for every repo in ssh user@host do

 List Down all repos in /var/svn-repos directory

 Goto the Working directory

 Add all repositories and Branches into url.txt

Repeat above Step for all repositories

 Done

 for url in urls.txt do

 Check out https : //domain/svn/branches/Master repo

 Goto the Working directory

 Search empty directories in /.svn/

 Create .gitkeep in every empty sub-directories

 Commit SVN into empty directory

Done

A novel approach for Pre-validation, Auto resiliency & Alert Notification PJAEE, 17 (9) (2020)

 for SVN to Git Migration using IoT devices

7137

for every repo in ssh user@host do

 Check out https: //domain/svn/branches/Develop repo

 Goto the Working directory

 Search empty directories in /.svn/

 Create .gitkeep in every empty sub-directories

 Commit SVN into empty directory

Done

SMS Alert user about SVN Project Structure

Results:

An email notification shall be sent by the Script and also results in command line.

Installation steps for SVN Mirror add on:

Firstly a fresh Git project need to be created in Git Bitbucket. Once the project is

created then it need to be identified if there is any empty repository. SVN-Mirror add

on tool is to be installed to migrate the project. For this purpose following command is

executed.

subgit.bat configure --layout auto --trunk TRUNK SVN_URL GIT_REPO

Figure 4 shows the results of SVN Mirror (SubGit) tool installation and configuration.

A novel approach for Pre-validation, Auto resiliency & Alert Notification PJAEE, 17 (9) (2020)

 for SVN to Git Migration using IoT devices

7138

Figure 4. Results of SVN Mirror (SubGit) tool installation and configuration

Configure SVN Mirror settings:

Now mirror Git repository need to be configured. For this purpose following

command is executed to configure Git repository to mirror SVN project:

$ subgit configure --layout auto --trunk trunk SVN_PROJECT_URL repos.git

Above command detects branches layout in the SVN project and then creates empty

Git repository ready to mirror SVN project.

Author mappings, Adjust Translation & Initial Translation:

Repositories names are to be provided to be used by Subgit tool to copy from SVN.

Finally, repositories shall be imported by executing import command. It will start

initial translation and will import all repositories from SVN to Git.

edit repos.git/subgit/config

$ edit repos.git/subgit/authors.txt

$subgit install repos.git

$ subgit import repos.git

3.2 SVN & Git SSH connectivity validation and space validation

During migration process if Git count is not increasing then most probably it is due to

network failure. In this situation during migration, migration process should get a

restart from the last commit point. For this purpose a script is developed in Python for

making a check if Git count is not increasing and to restart the migration process in

case of failure. System diagram between SVN & Git using NodeMCU (ESP8266 Wi-

Fi SoC) is shown in figure 5. Flow chart for checking the SSH & Network

connectivity using NodeMCU (ESP8266 Wi-Fi SoC) is shown in figure 6.

Figure 5. System Diagram between SVN & Git using NodeMCU (ESP8266 Wi-Fi SoC)

A novel approach for Pre-validation, Auto resiliency & Alert Notification PJAEE, 17 (9) (2020)

 for SVN to Git Migration using IoT devices

7139

3.3 SVN users and Git author mapping validation & detailed report generation

One of the biggest problem in SVN-Git migration is the missing author information. A

proper and stable mapping from the SVN users to the Git authors is needed for a better

mapping of Git author data. In SVN, the author is being stored as an un-versioned

revision property, namely svn:author. Every time a SVN user makes a commit, SVN

creates a new revision and sets this revision svn:author property to be equal to that

exact user’s name whereas Git, in turn, also stores author’s name along with every

commit. But this name differs from that in SVN. SVN stores actual username but Git

stores a name that is set by user.name Git directive, e.g., by global setting.

Hence at the time of migration start phase the SVN user are not properly mapped

which results in an incomplete migration resulting in waste of time, space and

resources. For addressing this problem few algorithms have been written and executed

in SVN-Git migration discussed below. Algorithm for translation settings is shown in

figure 7 and figure 8 shows the script for checking the authors mappings of SVN &

Git. Algorithm for comparing the Git users with SVN users is given in figure 9 and

final detailed report generated on migration is shown in figure 10.

Figure 6. Flow chart for checking the SSH & Network connectivity using

NodeMCU (ESP8266 Wi-Fi SoC)

A novel approach for Pre-validation, Auto resiliency & Alert Notification PJAEE, 17 (9) (2020)

 for SVN to Git Migration using IoT devices

7140

Algorithm: For pre migration validation and the generation of a detailed report of

pre-migration validation

gitdir ← Input a git directory.

gitdeveloperdir ← Input a developer directory.

svnMasterdir ← Input a svn master directory.

svndeveloperdir ← Input a svn developer directory.

svnRepodir ← Input a svn Repo directory.

Change directory to gitdir .

PRINT total count of author.

Change directory to svnMasterdir .

PRINT total count of author in SVN.

 PRINT all author’s name in SVN.

 Change directory to gitdir .

 Get into gitdir and svnmasterdir get all Author.

 Get first and last commits in that git by Date.

 Get first and last commits in that svn by Date.

 Create branch using above commits.

From Addr ← Sender JsEmailAddress

toAddr ← Receiver JsEmailAddress

Sub ← args.var [1] &&TEXT ←

args.var[2]

msg ← Sub + TEXT

Username ← UserJsEmailAddress

Passward ← UserJsPassward

Create a SMTP Client server for gmail.

Start a secure connection using SSL/TLS cryptographic protocol.

Login to server using Username and Passward

Input fromAddr and toAddr to the server.

Using SMTP.sendmail input msg to send the mail.

Quit the server after sending the mail using server.quit().

svnRepoURL ← Input a svn Repo URL.

gitRepoURL ← Input a git Repo URL.

SVNAuthors ← Get all Author’s name from SVN Repo.

GITAuthors ← Get all Author’s name from GIT Repo.

if SVNAuthors is available then:

 Remove SVNAuthor using rm SVNAuthor

if GITAuthors is available then:

 Remove GITAuthor using rm GITAuthor

Change directory to svnRepoURL

add SVNAuthor to SVNAuthors file.

PRINT all SVN author’s names are added to file.

add GITAuthor to GITAuthors file.

PRINT all GIT author’s names are added to file.

A novel approach for Pre-validation, Auto resiliency & Alert Notification PJAEE, 17 (9) (2020)

 for SVN to Git Migration using IoT devices

7141

compValue ← Compare SVNAuthors and GITAuthors file using diff −q SVNAuthors

GITAuthors.

if compValue equals to 1 then:

 PRINT SVNAuthors and GITAuthors names do not match

 Send Email to abc@gmail.com using mailX

else:

 PRINT SVNAuthors and GITAuthors names matches.

 Send Email to abc@gmail.com using mailX

Figure 7. Algorithm for Translation Settings

Figure 8. Script for checking the Authors Mappings SVN & Git

A novel approach for Pre-validation, Auto resiliency & Alert Notification PJAEE, 17 (9) (2020)

 for SVN to Git Migration using IoT devices

7142

 Figure 9. Algorithm for comparing the Git users with SVN users

Figure 10. Final detailed report generated on migration

A novel approach for Pre-validation, Auto resiliency & Alert Notification PJAEE, 17 (9) (2020)

 for SVN to Git Migration using IoT devices

7143

4. Results and Conclusion

Ten sample software projects have been taken for analysis for SVN to Git migration.

Figure 11 shows the time consumed before and after missing project structure

validation. Blue colored bar shows migration time of ten projects totaling 228 hours

without applying the proposed approach. This longer migration time is due to Git

space issue, SSH connectivity issue, missing project structure or other reasons. Green

colored bar shows migration time of ten projects totaling 36 hours by applying the

proposed approach. Proposed approach covers the issues related to Git space issue,

SSH connectivity issue, missing project structure or other reasons. Results show that

with the proposed approach time consumed during migration from SVN to Git came

down to about six times based on the sample of ten projects.

None of the available SVN-Git migration approaches has following four capabilities;

identification and validation of a complete development project structure, SVN & Git

SSH connectivity validation, SVN users & Git author mapping validation and remote

Git Server space validation. It results in an extensive longer time for migration from

SVN to Git along with incomplete migration. Proposed work for pre-migration

validation from SVN to Git covers all these four major limitations of the available

SVN to Git migration approaches. Many scripts have been developed and executed for

pre-migration validation and migration preparation which overcomes the problem of

incomplete migration.

Figure 11. Time consumed before and after missing project structure validation over the sample of ten

software projects

With all above mentioned experimentation done in the SRLC Software Research Lab,

Chicago it could be stated that it is very much possible and feasible that any version

control migration tool can be made more capable and dynamic by providing a holistic

approach for the migration for all repositories from SVN to Git. With the help of

automation and scripts it can be ensured that SVN repositories have proper structure

compatible to the Git structure before actual migration starts and during migration

there is proper notification sent to all stakeholders in the IT business.

References:

A novel approach for Pre-validation, Auto resiliency & Alert Notification PJAEE, 17 (9) (2020)

 for SVN to Git Migration using IoT devices

7144

[1] https://www2.physics.ox.ac.uk/it-services/moving-projects-from-svn-to-git (accessed

June 6, 2020)

[2] https://stosb.com/static/talks/case_study_git_efl_linuxcon_eu_13.pdf (accessed July

16, 2020)

[3] https://docs.microsoft.com/en-us/vsts/articles/perform-migration-from-svn-to-

git?view=vsts (accessed July 9, 2020)

[4] http://iopscience.iop.org/article/10.1088/1742-6596/898/7/072024 (accessed June 7,

2020)

[5] https://www2.physics.ox.ac.uk/it-services/moving-projects-from-svn-to-git (accessed

July 26, 2020)

[6] https://homes.cs.washington.edu/~mernst/advice/version-control.html (accessed June

8, 2020)

[7] https://uwaterloo.ca/web-resources/web-developers/developing-wcms/svn-git

(accessed July 10, 2020)

[8] https://www.kiva.org/blog/how-we-moved-from-Subversion-to-git-github (accessed

July 3, 2020)

[9] https://computing.llnl.gov/newsroom/great-migration-visit-moves-Subversion-github

(accessed July 16, 2020)

[10] Q. Hou, Y. Ma, J. Chen, Y. Xu, An Empirical Study on Inter-Commit Times in SVN,

Int. Conf. on Software Eng. and Knowledge Eng. (2014) 132-137.

[11] O. Arafat, D. Riehle, The Commit Size Distribution of Open Source Software, Proc.

the 42nd Hawaii Int. Conf. Syst. Sci. (HICSS’09), USA. (2009) 1-8.

[12] C. Kolassa, D. Riehle, M. Salim, A Model of the Commit Size Distribution of Open

Source, Proc. the 39th Int. Conf. Current Trends in Theory and Practice of Comput.

Sci. (SOFSEM’13), Czech Republic. (2013) 52-66.

[13] L. Hattori, M. Lanza, On the nature of commits, Proc. 4th Int. ERCIM Wksp. Softw.

Evol. and Evolvability (EVOL’08), Italy. (2008) 63-71.

[14] P. Hofmann, D. Riehle, Estimating Commit Sizes Efficiently, Proc. 5th IFIP WG 2.13

Int. Conf. Open Source Systems (OSS’09), Sweden. (2009) 105-115.

[15] C. Kolassa, D. Riehle, M. Salim, A Model of the Commit Size Distribution of Open

Source, In: van Emde Boas P., Groen F.C.A., Italiano G.F., Nawrocki J., Sack H. (eds)

SOFSEM 2013: Theory and Practice of Computer Science. SOFSEM 2013. Lecture

Notes in Computer Science, Springer, Berlin, Heidelberg. 7741 (2013) 52-66,

https://doi.org/10.1007/978-3-642-35843-2_6.

[16] O. Arafat, D. Riehle, The Commit Size Distribution of Open Source Software, Proc.

42nd Hawaii Inter. Conf. Systems Science (HICSS’09), IEEE Computer Society Press,

New York, NY. (2009) 1-8.

[17] R. Purushothaman, D.E. Perry, Toward Understanding the Rhetoric of Small Source

Code Changes, IEEE Transactions on Software Engineering. 31 (2005) 511-526.

[18] A. Alali, H. Kagdi, J. Maletic, What’s a Typical Commit? A Characterization of Open

Source Software Repositories, Proc. the 16th IEEE Int. Conf. Program Comprehension

(ICPC’08), Netherlands. (2008) 182-191.

https://www2.physics.ox.ac.uk/it-services/moving-projects-from-svn-to-git
https://stosb.com/static/talks/case_study_git_efl_linuxcon_eu_13.pdf
https://docs.microsoft.com/en-us/vsts/articles/perform-migration-from-svn-to-git?view=vsts
https://docs.microsoft.com/en-us/vsts/articles/perform-migration-from-svn-to-git?view=vsts
http://iopscience.iop.org/article/10.1088/1742-6596/898/7/072024
https://www2.physics.ox.ac.uk/it-services/moving-projects-from-svn-to-git
https://homes.cs.washington.edu/~mernst/advice/version-control.html
https://uwaterloo.ca/web-resources/web-developers/developing-wcms/svn-git

A novel approach for Pre-validation, Auto resiliency & Alert Notification PJAEE, 17 (9) (2020)

 for SVN to Git Migration using IoT devices

7145

[19] A. Hindle, D. Germán, R. Holt, What do large commits tell us?: a taxonomical study

of large commits, Proc. 5th Int. Working Conf. Mining Softw. Repos. (MSR’08),

Germany. (2008) 99-108.

[20] Y. Ma, Y. Wu, Y. Xu, Dynamics of Open-Source Software Developer’s Commit

Behavior: An Empirical Investigation of Subversion, Proc. 29th Annual ACM

Symposium on Applied Computing (SAC’14). (2014) 1171-1173, https://doi:

10.1145/2554850.2555079.

[21] S. Vaidya, S. Torres-Arias, R. Curtmola, J. Cappos, Commit Signatures for

Centralized Version Control Systems, In Dhillon G., Karlsson F., Hedström K.,

Zúquete A. (eds) ICT Systems Security and Privacy Protection. SEC 2019, IFIP

Advances in Information and Communication Technology, Springer, Cham. 562

(2019) 359-373, https://doi.org/10.1007/978-3-030-22312-0_25.

 [22] Lavdim Halilaj, Irlán Grangel-González, Gökhan Coskun, Steffen Lohmann, Sören

Auer, Git4Voc: Collaborative Vocabulary Development Based on Git, International

Journal of Semantic Computing. 10 (2016) 167-191.

[23] J. P. Diane, I. Hillmann, Gordon Dunsire, Versioning vocabularies in a linked data

world, IFLA Lion, 2014.

[24] M. Luczak-R¨osch, G. Coskun, A. Paschke, M. Rothe, R. Tolksdorf, Svont-version

control of owl ontologies on the concept level. 176 (2010) 79-84.

[25] E. Jim´enez-Ruiz, B.C. Grau, I. Horrocks, R.B. Llavori, Contentcvs: A cvs-based

collaborative ontology engineering tool, in SWAT4LS, Citeseer. (2009).

[26] I. Zaikin, A. Tuzovsky, Owl2vcs: Tools for distributed ontology development, in

OWLED, Citeseer. (2013).

[27] M Clemencic, B Couturier, J Closier, M Cattaneo, LHCb migration from Subversion

to Git, Journal of Physics: Conference Series, Track 5: Software Development. 898

(2017) 1-4.

[28] A. Kaur, D. Chopra, GCC-Git Change Classifier for Extraction and Classification of

Changes in Software Systems, In: Hu YC., Tiwari S., Mishra K., Trivedi M. (eds)

Intelligent Communication and Computational Technologies. Lecture Notes in

Networks and Systems, Springer, Singapore. 19 (2018) 259-267.

[29] V. Isomöttönen, M. Cochez, Challenges and Confusions in Learning Version Control

with Git, In: Ermolayev V., Mayr H., Nikitchenko M., Spivakovsky A., Zholtkevych

G. (eds) Information and Communication Technologies in Education, Research, and

Industrial Applications. ICTERI, Communications in Computer and Information

Science, Springer, Cham. 469 (2014) 178-193.

[30] Stefan Otte, Version Control Systems, Open Access paper. (2009)1-12.

https://www.worldscientific.com/doi/abs/10.1142/S1793351X16400067
https://www.worldscientific.com/doi/abs/10.1142/S1793351X16400067
https://www.worldscientific.com/doi/abs/10.1142/S1793351X16400067
https://www.worldscientific.com/doi/abs/10.1142/S1793351X16400067
https://www.worldscientific.com/doi/abs/10.1142/S1793351X16400067
https://www.worldscientific.com/doi/abs/10.1142/S1793351X16400067
https://www.worldscientific.com/worldscinet/ijsc
https://www.worldscientific.com/worldscinet/ijsc
https://www.worldscientific.com/toc/ijsc/10/02
https://iopscience.iop.org/journal/1742-6596
https://iopscience.iop.org/issue/1742-6596/898/7
https://iopscience.iop.org/volume/1742-6596/898

