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ABSTRACT 

Bug prediction is aimed at supporting developers in the identification of code artifacts more 

likely to be defective. Researchers have proposed prediction models to identify bug prone 

methods and provided promising evidence that it is possible to operate at this level of 

granularity. Particularly, models based on a mixture of product and process metrics, used as 

independent variables, led to the best results. In this study, we first replicate previous research on 

methodlevel bug prediction on different systems/timespans. Afterwards, we reflect on the 

evaluation strategy and propose a more realistic one. Key results of our study show that the 

performance of the method-level bug prediction model is similar to what previously reported also 

for different systems/timespans, when evaluated with the same strategy. However—when 

evaluated with a more realistic strategy—all the models show a dramatic drop in performance 

exhibiting results close to that of a random classifier. Our replication and negative results 

indicate that method-level bug prediction is still an open challenge. 

 

Introduction:  

The last decade has seen a remarkable involvement of software artifacts in our daily 

life [1]. Reacting to the frenzied demands of the market, most software systems 

nowadays grow fast introducing new and complex functionalities [38]. While having 

more capabilities in a software system can bring important benefits, there is the risk 

that this fast-paced evolution leads to a degradation in the maintainability of the 

system [69], with potentially dangerous consequences [6]. Maintaining an evolving 

software structure becomes more complex over time [48]. Since time and manpower 

are typically limited, software projects must strategically manage their resources to 

deal with this increasing complexity. To assist this problem, researchers have been 

conducting several studies on how to advise and optimize the limited project 

resources. One broadly investigated idea, known as bug prediction [32], consists in 

determining non-trivial areas of systems subjected to a higher quantity of bugs, to 

assign them more resources. Researchers have introduced and evaluated a variety of 
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bug prediction models based on the evolution [34] (e.g., number of changes), the 

anatomy [7] (e.g., lines of code, complexity), and the socio-technicals aspects (e.g., 

contribution organization) of software projects and artifacts [21]. These models have 

been evaluated individually or heterogeneously combining different projects [73], 

[87], [91]. Even though several proposed approaches achieved remarkable prediction 

performance [57], the practical relevance of bug prediction research has been largely 

criticized as not capable of addressing a real developer’s need [77], [49], [47]. One 

of the criticisms regards the granularity at which bugs are found; in fact, most of the 

presented models predict bugs at a coarse-grained level, such as modules or files. 

This granularity is deemed not informative enough for practitioners, because files 

and modules can be arbitrarily large, thus requiring a significant amount of files to 

be examined [29]. In addition, considering that large classes tend to be more bug-

prone [42], [65], the effort required to identify the defective part is even more 

substantial [7], [30], [62]. Menzies et al. [53] and Tosun et al. [86] introduced the 

first investigations exploring a finer granularity: function-level. Successively, Giger 

et al. [29] and Hata et al. [35] delved into finer granularity investigating the method-

level bug prediction. Giger et al. found that product and process metrics contribute to 

the identification of buggy methods and their combination achieves promising 

performance [29]. Hata et al. found that method-level bug prediction saves more 

effort than both filelevel and package-level prediction [35]. In this paper, we 

replicate the investigations on bug prediction at method-level, focusing on the study 

by Giger et al. [29]. We use the same features and classifiers as the reference work, 

but on a different dataset to test the generalizability of their findings. Then we reflect 

on the evaluation strategy and propose a more realistic one. That is, instead of both 

taking change history and predicted bugs from the same time frame and of using 

cross-validation, we estimate the performance using data from subsequent releases 

(as done by the most recent studies, but at a coarser granularity [72]). Our results—

computed on different systems/timeframes than the reference work—corroborate the 

generalizability of the performance of the proposed method-level models, when 

estimated using the previous evaluation strategy. However, when evaluated with a 

release-by-release strategy, all the estimated models present lower performance, 

close to that of a random classifier. As a consequence, even though we could 

replicate the reference work, we found that its realistic evaluation leads to negative 

results. This suggests that methodlevel bug prediction is still not a solved problem 

and the research community has the chance to devote more effort in devising more 

effective models that better assist software engineers in practice 

BACKGROUND AND RELATED WORK Bug prediction has been extensively 

studied by our research community in the last decade [32]. Researchers have 

investigated what makes source code more bug-prone (e.g., [3], [4], [18], [8], [12], 

[42], [64], [65], [66], [75], [71]), and have proposed several unsupervised (e.g., [20], 

[58], [90]) as well as supervised (e.g., [11], [22], [39], [67], [92]) bug prediction 

techniques. More recently, researchers have started investigating the concept of just-

in-time bug prediction, which has been proposed with the aim of providing 

developers with recommendations at commit-level (e.g., [43], [40], [78], [27], [89], 

[52], [37]). Our current paper focuses on investigating how well supervised 

approaches can identify bug-prone methods. For this reason, we firstly describe 

related work on predicting bugprone classes, then we detail the earlier work on 



RE-ESTIMATING PROCESS-LEVEL MICROBE ESTIMATE  
PJAEE, 18 (4) (2021) 

 

1313  

predicting bug-prone methods and how our work investigates its limitations and re-

evaluates it. A. Class-level Bug Prediction The approaches in this category differ 

from each other mainly for the underlying prediction algorithm and for the 

considered features, i.e., product metrics (e.g., lines of code) and/or process metrics 

(e.g., number of changes to a class). Product metrics. Basili et al. [7] found that five 

of the CK metrics [15] can help determining buggy classes and that Coupling 

Between Objects (CBO) is that mostly related to bugs. These results were later re-

confirmed [30], [41], [80]. Ohisson et al. [61] focused on design metrics (e.g., 

‘number of nodes’) to identify bug-prone modules, revealing the applicability of 

such metrics for the identification of buggy modules. Nagappan and Ball [55] 

exploited two static analysis tools to predict the pre-release bug density for Windows 

Server, showing good performance. Nagappan et al. [56] experimented with code 

metrics for predicting buggy components across five Microsoft projects, finding that 

there is no single universally best metric. Zimmerman et al. [92] investigated 

complexity metrics for bug prediction reporting a positive correlation between code 

complexity and bugs. Finally, Nikora et al. [59] showed that measurements of a 

system’s structural evolution (e.g., ‘number of executable statements’) can serve as 

bug predictors. Process metrics. Graves et al. [85] experimented both product and 

process metrics for bug prediction, finding that product metrics are poor predictors 

of bugs. Khoshgoftaar et al. [81] assessed the role of debug churns (i.e., the number 

of lines of code changed to fix bugs) in an empirical study, showing that modules 

having a large number of debug churns are likely to be defective. To further 

investigate the role played by product and process metrics, Moser et al. [54], [74] 

performed two comparative studies, which highlighted the superiority of process 

metrics in predicting buggy code components. Later on, D’Ambros et al. [19] 

performed an extensive comparison of bug prediction approaches relying on both the 

sources of information, finding that no technique works better in all contexts. A 

complementary approach is the use of developer-related factors for bug prediction. 

For example, Hassan investigated a technique based on the entropy of code changes 

by developers [34], reporting that it has better performance than models based on 

code components changes. Ostrand et al. [9], [63] proposed the use of the number of 

developers who modified a code component as a bug-proneness predictor: however, 

the performance of the resulting model was poorly improved with respect to existing 

models. Finally, Di Nucci et al. [21] defined a bug prediction model based on a 

mixture of code, process, and developer-based metrics outperforming the 

performance of existing models. Despite the aforementioned promising results, 

developers consider class/module level bug prediction too coarse-grained for 

practical usage [77]. Hence, the need for a more finegrained prediction, such as 

method-level. This target adjustment does not negate the value of the preceding 

work but calls for a re-evaluation of the effectiveness of the proposed methods and, 

possibly, a work of adaptation. B. Method-level Bug Prediction So far, only Giger et 

al. [29] and Hata et al. [35] independently and almost contemporaneously targeted 

the prediction of bugs at method-level. Overall they defined a set of metrics (Hata et 

al. mostly process metrics, while Giger et al. also considered product metrics) and 

evaluated their bug prediction capabilities. Giger et al. found that both product and 

process metrics contribute to the identification of buggy methods and their 

combination achieves promising performance (i.e., FMeasure=86%) [29]. Hata et al. 
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found that using method-level bug prediction one saves more effort (measured in 

number of LOC to be analyzed) than both file-level and package-level prediction 

[35]. The data collection approach used by both sets of researchers is very similar, 

here we detail that used by Giger et al. [29], as an exemplification. To produce the 

dataset used in their evaluation, Giger et al. conducted the following steps [29]: they 

(1) took a large time frame in the history of 22 Java OSS systems, (2) considered the 

methods present at the end of the time frame, (3) computed product metrics for each 

method at the end of the time frame, (4) computed process metrics (e.g., number of 

changes) for each method throughout the time frame, and (5) counted the number of 

bugs for each method throughout the time frame, relying on bug fixing commits. 

Finally, they used 10-fold cross-validation [44] to evaluate three models (only 

process metrics, only product metrics, and both combined), considering the 

presence/absence of bug(s) in a method as the dependent binary variable. In the 

work presented in this paper, we replicate the same methodology of Giger et al. and 

Hata et al. on an overlapping sets of projects to see whether we are able to reach 

similar results for other contexts. For simplicity and because the methodological 

details are more extensive, we follow more closely the case of Giger et al. [29]. 

 

BUG DATA 

Bug data of software projects is managed and stored in bug tracking systems, such as 

Bugzilla. Unfortunately, many bug tracking systems are not inherently linked to 

VCSs. However, developers fixing a bug often manually enter a reference to that 

particular bug in the commit message of the corresponding revision, e.g.,”fixed 

bug1234” or ”bug#345”. Researchers developed pattern matching techniques to 

detect those references accurately [43], and thus to link source code files with bugs. 

We adapted the pattern matching approach to work at method-level: Whenever we 

find that a method was changed between two revisions of a file  and the commit 

message contains a bug reference, we consider the method to be affected by the bug. 

Based on this, we then count the number of bugs per method over the given 

timeframes in consistently enter and track bugs within the commit messages of the 

VCS. Furthermore, we rely on the fact that developers commit regularly when 

carrying out corrective maintenance, i.e., they only change those methods (between 

two revisions) related to that particular bug report being referenced in the commit 

message. We discuss issues regarding the data collection, in particular regarding the 

bug-linking approach, that might threaten the validity  

PREDICTION EXPERIMENTS 

We conducted a set of prediction experiments using the dataset presented  to 

investigate the feasibility of building prediction models on method-level. We first 

describe the experimental setup and then report and discuss the results. 

Experimental Setup 

Prior to model building and classification we labeled each method in our dataset 

either as bug-prone or not bug-prone as follows: 

 
These two classes represent the binary target classes for training and validating the 

prediction models. Using 0 (respectively 
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1) as cut-point is a common approach applied in many studies covering bug 

prediction models, e.g., [30, 48, 47, 4, 27, 37]. Other cut-points are applied in 

literature, for instance, a statistical lower confidence bound [33] or the median [16]. 

Those varying cut-points as well as the diverse 

datasets result in different prior probabilities. For instance, in our dataset 

approximately one third of all methods were labeled as bug-prone; Moser et al. 

report on prior probabilitiesof 23%–32% with respect to bug-prone files; in [27] 

0.4%–49% of all modules contain bugs; and in [48] 50% of all Java packages are 

bug free. Given this (and the fact that prior probabilities are not consistently reported 

in literature), the use of precision and recall as classification performance measures 

across different studies is difficult. Following the advice proposed in [26, 27] we use 

the area under the receiver operating characteristic curve (AUC) to asses and discuss 

the performance of our prediction models. AUC is a robust measure since it is 

independent of prior probabilities [4]. Moreover, AUC has a clear statistical 

interpretation [26]: 

When selecting randomly a bug-prone and a not bug-prone method, AUC represents 

the probability that a given classifier assigns a higher rank to the bug-prone method. 

We also report on precision (P) and recall (R) in our experiments to allow for 

comparison with existing work. 

In [26], Lessmann et al. compared the performance of several classification 

algorithms. They found out that more advanced algorithms, such as Random Forest 

and Support Vector Machine, perform better. However, the performance differences 

should not be overestimated, i.e., they are not significant. We observed similar 

findings in a previous study using fine-grained source code changes to build 

prediction models on file-level [16]. Menzies et al. successfully used Bayesian 

classifiers for bug prediction [27]. To contribute to that discussion (on method-level) 

we chose four different classifiers: Random Forest (RndFor), Bayesian Network 

(BN), Support Vector Machine (SVM), and the J48 decision tree. The Rapidminer 

Toolkit [29] was used for running all classification experiments. We built three 

different models for each classifier: The 

first model uses change metrics as predictors, the second uses source code metrics  

and the third uses both metric sets (CM&SCM) as predictor variables. All our 

prediction models were trained and validated using 10-fold cross validation (based 

on stratified sampling ensuring that the class distribution in the subsets is the same 

as in the whole dataset). 

APPLICATION OF RESULTS 

The results of our study showed that we can build bug prediction models at the 

method level with good classification performance by leveraging the change 

information provided by fine-grained source code changes. In the following we 

demonstrate the application and benefit of our prediction model to identify the bug-

prone methods in a source file compared to a file-level prediction model that 

performs equally well. For that, we assume a scenario as follows: A software 

developer of the JDT Core plugin, the largest Eclipse project, and the Derby Engine 

module, the largest non-Eclipse project in our dataset, receives the task to improve 

the unit testing in their software application in order to prevent future post-release 

bugs. For this, she needs to know the most bug-prone methods because they should 

be tested first and more rigorously than the other methods. For illustration purpose, 
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we assume the developer has little knowledge about her project (e.g., she is new to 

the project). To identify the bug-prone methods, she uses two prediction models, one 

model to predict the bug-prone source files and our Random Forest (RndFor) model 

to directly predict the bug-prone methods of a given source file. Furthermore, we 

take as examples release 3.0 of the JDT Core plugin and release 10.2.2.0 of the 

Derby Engine module. For both releases, she uses the two prediction models trained 

on the source code metrics and the versioning system history back to the last major 

release (i.e., 2.1 in case of JDT Core and 10.2.1.6 in case of Derby) for calculating 

the change metrics. Furthermore, both the models were trained using 1 bug as 

binning cut-point and 10- fold cross validation and then reapplied to the dataset. To 

better quantify the advantage of our method level prediction model over the file-

level prediction model, we assume that the file-level prediction model performs 

equally well in terms of AUC, precision, and recall. 

CONCLUSIONS AND FUTUREWORK 

We empirically investigated if bug prediction models at the method level can be 

successfully created. We used the source code and change history of 21 Java open-

source (sub-)systems. Our experiments showed that: 

• Change metrics (extracted from the version control system of a project) can be 

used to train prediction models with good performance. For example, a Random 

Forest model achieved an AUC of 0.95, precision of 0.84, and a recall of 0.88 

(RQ1). 

• Using change metrics as predictor variables produced prediction models with 

significantly better results compared to source code metrics. However, including 

both metrics sets did not improve the classification performance of our models 

(RQ2). 

• Different binning values did not affect the AUC values of our models (RQ3). 

Moreover, with a precision of 0.68 our models identify the ”top 5%” of all bug-

prone methods better than chance. 

• Conforming prior work, e.g., [26], we could not observe a significant difference 

among several machine learning techniques with respect to their classification 

performance. Given their good performance, our method-level prediction models can 

save manual inspection steps. Currently, we use the entire development history 

available at the time of data collection to train prediction models. It is part of our 

future work to measure changes based on different timeframes, e.g., release, 

quarterly, or yearly based. Furthermore, we plan to investigate a broader feature 

space, i.e., additional attributes, more advanced attribute selection techniques (rather 

than ”feeding all data” to the data mining algorithms), e.g., Information Gain [27], 

for prediction model building. 
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