
RE-ESTIMATING PROCESS-LEVEL MICROBE ESTIMATE
PJAEE, 18 (4) (2021)

1311

Busaramoni Jayanth*, Dr.S. Venu Gopal**, RE-ESTIMATING PROCESS-

LEVEL MICROBE ESTIMATE - Palarch’s Journal Of Archaeology Of

Egypt/Egyptology 18(4). ISSN 1567-214x

"RE-ESTIMATING PROCESS-LEVEL MICROBE ESTIMATE"

 Busaramoni Jayanth*, Dr.S. Venu Gopal**

PG Scholar*, Associate Professor**

Department Of CSE, Vardhaman College Of Engineering, Hyderabad.

ABSTRACT

Bug prediction is aimed at supporting developers in the identification of code artifacts more

likely to be defective. Researchers have proposed prediction models to identify bug prone

methods and provided promising evidence that it is possible to operate at this level of

granularity. Particularly, models based on a mixture of product and process metrics, used as

independent variables, led to the best results. In this study, we first replicate previous research on

methodlevel bug prediction on different systems/timespans. Afterwards, we reflect on the

evaluation strategy and propose a more realistic one. Key results of our study show that the

performance of the method-level bug prediction model is similar to what previously reported also

for different systems/timespans, when evaluated with the same strategy. However—when

evaluated with a more realistic strategy—all the models show a dramatic drop in performance

exhibiting results close to that of a random classifier. Our replication and negative results

indicate that method-level bug prediction is still an open challenge.

Introduction:

The last decade has seen a remarkable involvement of software artifacts in our daily

life [1]. Reacting to the frenzied demands of the market, most software systems

nowadays grow fast introducing new and complex functionalities [38]. While having

more capabilities in a software system can bring important benefits, there is the risk

that this fast-paced evolution leads to a degradation in the maintainability of the

system [69], with potentially dangerous consequences [6]. Maintaining an evolving

software structure becomes more complex over time [48]. Since time and manpower

are typically limited, software projects must strategically manage their resources to

deal with this increasing complexity. To assist this problem, researchers have been

conducting several studies on how to advise and optimize the limited project

resources. One broadly investigated idea, known as bug prediction [32], consists in

determining non-trivial areas of systems subjected to a higher quantity of bugs, to

assign them more resources. Researchers have introduced and evaluated a variety of

RE-ESTIMATING PROCESS-LEVEL MICROBE ESTIMATE
PJAEE, 18 (4) (2021)

1312

bug prediction models based on the evolution [34] (e.g., number of changes), the

anatomy [7] (e.g., lines of code, complexity), and the socio-technicals aspects (e.g.,

contribution organization) of software projects and artifacts [21]. These models have

been evaluated individually or heterogeneously combining different projects [73],

[87], [91]. Even though several proposed approaches achieved remarkable prediction

performance [57], the practical relevance of bug prediction research has been largely

criticized as not capable of addressing a real developer’s need [77], [49], [47]. One

of the criticisms regards the granularity at which bugs are found; in fact, most of the

presented models predict bugs at a coarse-grained level, such as modules or files.

This granularity is deemed not informative enough for practitioners, because files

and modules can be arbitrarily large, thus requiring a significant amount of files to

be examined [29]. In addition, considering that large classes tend to be more bug-

prone [42], [65], the effort required to identify the defective part is even more

substantial [7], [30], [62]. Menzies et al. [53] and Tosun et al. [86] introduced the

first investigations exploring a finer granularity: function-level. Successively, Giger

et al. [29] and Hata et al. [35] delved into finer granularity investigating the method-

level bug prediction. Giger et al. found that product and process metrics contribute to

the identification of buggy methods and their combination achieves promising

performance [29]. Hata et al. found that method-level bug prediction saves more

effort than both filelevel and package-level prediction [35]. In this paper, we

replicate the investigations on bug prediction at method-level, focusing on the study

by Giger et al. [29]. We use the same features and classifiers as the reference work,

but on a different dataset to test the generalizability of their findings. Then we reflect

on the evaluation strategy and propose a more realistic one. That is, instead of both

taking change history and predicted bugs from the same time frame and of using

cross-validation, we estimate the performance using data from subsequent releases

(as done by the most recent studies, but at a coarser granularity [72]). Our results—

computed on different systems/timeframes than the reference work—corroborate the

generalizability of the performance of the proposed method-level models, when

estimated using the previous evaluation strategy. However, when evaluated with a

release-by-release strategy, all the estimated models present lower performance,

close to that of a random classifier. As a consequence, even though we could

replicate the reference work, we found that its realistic evaluation leads to negative

results. This suggests that methodlevel bug prediction is still not a solved problem

and the research community has the chance to devote more effort in devising more

effective models that better assist software engineers in practice

BACKGROUND AND RELATED WORK Bug prediction has been extensively

studied by our research community in the last decade [32]. Researchers have

investigated what makes source code more bug-prone (e.g., [3], [4], [18], [8], [12],

[42], [64], [65], [66], [75], [71]), and have proposed several unsupervised (e.g., [20],

[58], [90]) as well as supervised (e.g., [11], [22], [39], [67], [92]) bug prediction

techniques. More recently, researchers have started investigating the concept of just-

in-time bug prediction, which has been proposed with the aim of providing

developers with recommendations at commit-level (e.g., [43], [40], [78], [27], [89],

[52], [37]). Our current paper focuses on investigating how well supervised

approaches can identify bug-prone methods. For this reason, we firstly describe

related work on predicting bugprone classes, then we detail the earlier work on

RE-ESTIMATING PROCESS-LEVEL MICROBE ESTIMATE
PJAEE, 18 (4) (2021)

1313

predicting bug-prone methods and how our work investigates its limitations and re-

evaluates it. A. Class-level Bug Prediction The approaches in this category differ

from each other mainly for the underlying prediction algorithm and for the

considered features, i.e., product metrics (e.g., lines of code) and/or process metrics

(e.g., number of changes to a class). Product metrics. Basili et al. [7] found that five

of the CK metrics [15] can help determining buggy classes and that Coupling

Between Objects (CBO) is that mostly related to bugs. These results were later re-

confirmed [30], [41], [80]. Ohisson et al. [61] focused on design metrics (e.g.,

‘number of nodes’) to identify bug-prone modules, revealing the applicability of

such metrics for the identification of buggy modules. Nagappan and Ball [55]

exploited two static analysis tools to predict the pre-release bug density for Windows

Server, showing good performance. Nagappan et al. [56] experimented with code

metrics for predicting buggy components across five Microsoft projects, finding that

there is no single universally best metric. Zimmerman et al. [92] investigated

complexity metrics for bug prediction reporting a positive correlation between code

complexity and bugs. Finally, Nikora et al. [59] showed that measurements of a

system’s structural evolution (e.g., ‘number of executable statements’) can serve as

bug predictors. Process metrics. Graves et al. [85] experimented both product and

process metrics for bug prediction, finding that product metrics are poor predictors

of bugs. Khoshgoftaar et al. [81] assessed the role of debug churns (i.e., the number

of lines of code changed to fix bugs) in an empirical study, showing that modules

having a large number of debug churns are likely to be defective. To further

investigate the role played by product and process metrics, Moser et al. [54], [74]

performed two comparative studies, which highlighted the superiority of process

metrics in predicting buggy code components. Later on, D’Ambros et al. [19]

performed an extensive comparison of bug prediction approaches relying on both the

sources of information, finding that no technique works better in all contexts. A

complementary approach is the use of developer-related factors for bug prediction.

For example, Hassan investigated a technique based on the entropy of code changes

by developers [34], reporting that it has better performance than models based on

code components changes. Ostrand et al. [9], [63] proposed the use of the number of

developers who modified a code component as a bug-proneness predictor: however,

the performance of the resulting model was poorly improved with respect to existing

models. Finally, Di Nucci et al. [21] defined a bug prediction model based on a

mixture of code, process, and developer-based metrics outperforming the

performance of existing models. Despite the aforementioned promising results,

developers consider class/module level bug prediction too coarse-grained for

practical usage [77]. Hence, the need for a more finegrained prediction, such as

method-level. This target adjustment does not negate the value of the preceding

work but calls for a re-evaluation of the effectiveness of the proposed methods and,

possibly, a work of adaptation. B. Method-level Bug Prediction So far, only Giger et

al. [29] and Hata et al. [35] independently and almost contemporaneously targeted

the prediction of bugs at method-level. Overall they defined a set of metrics (Hata et

al. mostly process metrics, while Giger et al. also considered product metrics) and

evaluated their bug prediction capabilities. Giger et al. found that both product and

process metrics contribute to the identification of buggy methods and their

combination achieves promising performance (i.e., FMeasure=86%) [29]. Hata et al.

RE-ESTIMATING PROCESS-LEVEL MICROBE ESTIMATE
PJAEE, 18 (4) (2021)

1314

found that using method-level bug prediction one saves more effort (measured in

number of LOC to be analyzed) than both file-level and package-level prediction

[35]. The data collection approach used by both sets of researchers is very similar,

here we detail that used by Giger et al. [29], as an exemplification. To produce the

dataset used in their evaluation, Giger et al. conducted the following steps [29]: they

(1) took a large time frame in the history of 22 Java OSS systems, (2) considered the

methods present at the end of the time frame, (3) computed product metrics for each

method at the end of the time frame, (4) computed process metrics (e.g., number of

changes) for each method throughout the time frame, and (5) counted the number of

bugs for each method throughout the time frame, relying on bug fixing commits.

Finally, they used 10-fold cross-validation [44] to evaluate three models (only

process metrics, only product metrics, and both combined), considering the

presence/absence of bug(s) in a method as the dependent binary variable. In the

work presented in this paper, we replicate the same methodology of Giger et al. and

Hata et al. on an overlapping sets of projects to see whether we are able to reach

similar results for other contexts. For simplicity and because the methodological

details are more extensive, we follow more closely the case of Giger et al. [29].

BUG DATA

Bug data of software projects is managed and stored in bug tracking systems, such as

Bugzilla. Unfortunately, many bug tracking systems are not inherently linked to

VCSs. However, developers fixing a bug often manually enter a reference to that

particular bug in the commit message of the corresponding revision, e.g.,”fixed

bug1234” or ”bug#345”. Researchers developed pattern matching techniques to

detect those references accurately [43], and thus to link source code files with bugs.

We adapted the pattern matching approach to work at method-level: Whenever we

find that a method was changed between two revisions of a file and the commit

message contains a bug reference, we consider the method to be affected by the bug.

Based on this, we then count the number of bugs per method over the given

timeframes in consistently enter and track bugs within the commit messages of the

VCS. Furthermore, we rely on the fact that developers commit regularly when

carrying out corrective maintenance, i.e., they only change those methods (between

two revisions) related to that particular bug report being referenced in the commit

message. We discuss issues regarding the data collection, in particular regarding the

bug-linking approach, that might threaten the validity

PREDICTION EXPERIMENTS

We conducted a set of prediction experiments using the dataset presented to

investigate the feasibility of building prediction models on method-level. We first

describe the experimental setup and then report and discuss the results.

Experimental Setup

Prior to model building and classification we labeled each method in our dataset

either as bug-prone or not bug-prone as follows:

These two classes represent the binary target classes for training and validating the

prediction models. Using 0 (respectively

RE-ESTIMATING PROCESS-LEVEL MICROBE ESTIMATE
PJAEE, 18 (4) (2021)

1315

1) as cut-point is a common approach applied in many studies covering bug

prediction models, e.g., [30, 48, 47, 4, 27, 37]. Other cut-points are applied in

literature, for instance, a statistical lower confidence bound [33] or the median [16].

Those varying cut-points as well as the diverse

datasets result in different prior probabilities. For instance, in our dataset

approximately one third of all methods were labeled as bug-prone; Moser et al.

report on prior probabilitiesof 23%–32% with respect to bug-prone files; in [27]

0.4%–49% of all modules contain bugs; and in [48] 50% of all Java packages are

bug free. Given this (and the fact that prior probabilities are not consistently reported

in literature), the use of precision and recall as classification performance measures

across different studies is difficult. Following the advice proposed in [26, 27] we use

the area under the receiver operating characteristic curve (AUC) to asses and discuss

the performance of our prediction models. AUC is a robust measure since it is

independent of prior probabilities [4]. Moreover, AUC has a clear statistical

interpretation [26]:

When selecting randomly a bug-prone and a not bug-prone method, AUC represents

the probability that a given classifier assigns a higher rank to the bug-prone method.

We also report on precision (P) and recall (R) in our experiments to allow for

comparison with existing work.

In [26], Lessmann et al. compared the performance of several classification

algorithms. They found out that more advanced algorithms, such as Random Forest

and Support Vector Machine, perform better. However, the performance differences

should not be overestimated, i.e., they are not significant. We observed similar

findings in a previous study using fine-grained source code changes to build

prediction models on file-level [16]. Menzies et al. successfully used Bayesian

classifiers for bug prediction [27]. To contribute to that discussion (on method-level)

we chose four different classifiers: Random Forest (RndFor), Bayesian Network

(BN), Support Vector Machine (SVM), and the J48 decision tree. The Rapidminer

Toolkit [29] was used for running all classification experiments. We built three

different models for each classifier: The

first model uses change metrics as predictors, the second uses source code metrics

and the third uses both metric sets (CM&SCM) as predictor variables. All our

prediction models were trained and validated using 10-fold cross validation (based

on stratified sampling ensuring that the class distribution in the subsets is the same

as in the whole dataset).

APPLICATION OF RESULTS

The results of our study showed that we can build bug prediction models at the

method level with good classification performance by leveraging the change

information provided by fine-grained source code changes. In the following we

demonstrate the application and benefit of our prediction model to identify the bug-

prone methods in a source file compared to a file-level prediction model that

performs equally well. For that, we assume a scenario as follows: A software

developer of the JDT Core plugin, the largest Eclipse project, and the Derby Engine

module, the largest non-Eclipse project in our dataset, receives the task to improve

the unit testing in their software application in order to prevent future post-release

bugs. For this, she needs to know the most bug-prone methods because they should

be tested first and more rigorously than the other methods. For illustration purpose,

RE-ESTIMATING PROCESS-LEVEL MICROBE ESTIMATE
PJAEE, 18 (4) (2021)

1316

we assume the developer has little knowledge about her project (e.g., she is new to

the project). To identify the bug-prone methods, she uses two prediction models, one

model to predict the bug-prone source files and our Random Forest (RndFor) model

to directly predict the bug-prone methods of a given source file. Furthermore, we

take as examples release 3.0 of the JDT Core plugin and release 10.2.2.0 of the

Derby Engine module. For both releases, she uses the two prediction models trained

on the source code metrics and the versioning system history back to the last major

release (i.e., 2.1 in case of JDT Core and 10.2.1.6 in case of Derby) for calculating

the change metrics. Furthermore, both the models were trained using 1 bug as

binning cut-point and 10- fold cross validation and then reapplied to the dataset. To

better quantify the advantage of our method level prediction model over the file-

level prediction model, we assume that the file-level prediction model performs

equally well in terms of AUC, precision, and recall.

CONCLUSIONS AND FUTUREWORK

We empirically investigated if bug prediction models at the method level can be

successfully created. We used the source code and change history of 21 Java open-

source (sub-)systems. Our experiments showed that:

• Change metrics (extracted from the version control system of a project) can be

used to train prediction models with good performance. For example, a Random

Forest model achieved an AUC of 0.95, precision of 0.84, and a recall of 0.88

(RQ1).

• Using change metrics as predictor variables produced prediction models with

significantly better results compared to source code metrics. However, including

both metrics sets did not improve the classification performance of our models

(RQ2).

• Different binning values did not affect the AUC values of our models (RQ3).

Moreover, with a precision of 0.68 our models identify the ”top 5%” of all bug-

prone methods better than chance.

• Conforming prior work, e.g., [26], we could not observe a significant difference

among several machine learning techniques with respect to their classification

performance. Given their good performance, our method-level prediction models can

save manual inspection steps. Currently, we use the entire development history

available at the time of data collection to train prediction models. It is part of our

future work to measure changes based on different timeframes, e.g., release,

quarterly, or yearly based. Furthermore, we plan to investigate a broader feature

space, i.e., additional attributes, more advanced attribute selection techniques (rather

than ”feeding all data” to the data mining algorithms), e.g., Information Gain [27],

for prediction model building.

REFERENCES

[1] G. Antoniol, K. Ayari, M. D. Penta, F. Khomh, and Y.-G. Gu´eh´eneuc. Is it a

bug or an enhancement? A text-based approach to classify change requests. In Proc.

Conf. of the center for advanced studies on collaborative research: meeting of minds,

pages 304–318, 2008.

[2] E. Arisholm and L. Briand. Predicting fault-prone components in a java legacy

system. In Proc. Int’l Symp. on Empir. Softw. Eng., pages 8–17, 2006.

[3] V. Basili, L. Briand, and W. Melo. A validation of object-oriented design metrics

RE-ESTIMATING PROCESS-LEVEL MICROBE ESTIMATE
PJAEE, 18 (4) (2021)

1317

as quality indicators. IEEE Trans. Softw. Eng., 22:751–761, October 1996.

[4] A. Bernstein, J. Ekanayake, and M. Pinzger. Improving defect prediction using

temporal features and non linear models. In Proc. Int’l Workshop on Principles of

Softw. Evolution, pages 11–18, 2007.

[5] C. Bird, A. Bachmann, E. Aune, J. Duffy, A. Bernstein, V. Filkov, and P.

Devanbu. Fair and balanced?: bias in bug-fix datasets. In Proc. Joint Eur. Softw.

Eng. Conf. and Symp. on the Found. of Softw. Eng., pages 121–130, 2009.

[6] C. Bird, N. Nagappan, P. Devanbu, H. Gall, and B. Murphy. Does distributed

development affect software quality? an empirical case study of windows vista. In

Proc. Int’l Conf. on Softw. Eng., pages 518–528, 2009.

[7] C. Bird, N. Nagappan, B. Murphy, H. Gall, and P. Devanbu. Don’t Touch My

Code! Examining the Effects of Ownership on Software Quality. In Proc. Joint Eur

Softw. Eng. Conf. and Symp. on the Found. of Softw. Eng., pages 4–14, 2011.

[8] S. R. Chidamber and C. F. Kemerer. A metrics suite for object oriented design.

IEEE Trans. Softw. Eng., 20(6):476–493, June 1994.

[9] M. D’Ambros, M. Lanza, and R. Robbes. Evaluating defect prediction

approaches: a benchmark and an extensive comparison. Empir. Softw. Eng., pages

1–47, 2011.

[10] G. Denaro and M. Pezz`e. An empirical evaluation of fault-proneness models.

In Proc. Int’l Conf. on Softw. Eng., pages 241–251, 2002.

[11] K. E. Emam, S. Benlarbi, N. Goel, and S. Rai. The confounding effect of class

size on the validity of object-oriented metrics. IEEE Trans. on Softw. Eng.,

27(7):630–650, July 2001.

[12] B. Fluri, M. W¨ursch, M. Pinzger, and H. C. Gall. Change Distilling: Tree

Differencing for Fine-Grained Source Code Change Extraction. IEEE Trans. On

Softw. Eng., 33(11):725–743, November 2007.

[13] B. Fluri, J. Zuberbuehler, and H. C. Gall. Recommending method invocation

context changes. In Proc. Int’l Workshop on Recomm. Syst. for Softw. Eng., pages

1–5, 2008.

[14] H. C. Gall, B. Fluri, and M. Pinzger. Change analysis with evolizer and

changedistiller. IEEE Software, 26(1):26–33, January/February 2009.

[15] G. Ghezzi and H. Gall. Sofas: A lightweight architecture for software analysis

as a service. In Proc. Working Conf. on Softw. Architecture, pages 93–102, 2011.

