PalArch's Journal of Archaeology of Egypt / Egyptology

FISCAL POLICY SHOCK REACTIONS OF THE ECONOMY IN THE VAR MODEL

AdirekVajrapatkul

School of Economic, SukhothaiThammathirat Open University, Thailand.

AdirekVajrapatkul, Fiscal Policy Shock Reactions Of The Economy In The Var Model, Palarch's Journal Of Archaeology Of Egypt/Egyptology 17(12). ISSN 1567-214x.

Keywords: open economy, fiscal policy shock, fiscal policy expansion, Vector autoregression (VAR) model, impulse response.

ABSTRACT:

This work presents the effects of various shocks on Thailand's economic environment by utilizing Vector Autoregression (VAR) model with the quarterly modified data of Thailand, 2002:Q1-2019:Q2. This model shows the interactions between domestic variables (government spending, domestic price, consumption, investment, employment, and output) and the international related one (export and exchange rate) to present an open economy environment. The results from this work revealed that 1) government spending in the last period positively affected the current level of employment and negatively to the current level of consumption; 2) government spending in the last two period positively affected the current level of employment. However, it negatively affected the current level of domestic price and domestic consumption; 3) no evidence of exchange rate reaction to government spending and channel any effect of this spending to other variables. For the results obtained from variance decomposition and the impulse response analysis, we found that a unit shock of government spending can push down domestic price and consumption, but push up an exchange rate, employment, investment, export, and output, with time delay for some variable. Also, all of these variables oscillate and decline periodically to their equilibrium. According to the results produced from this work, we hence recommend the government authority to take into consideration the expectation dimension when designing the current fiscal policy. Also, it needs to launch a fiscal expansion policy to encounter an economic recession, while taking into account the crowding-out effect.

1. Introduction:

To stabilize the economy or encounter the business cycle, the government can act through an adjustment of its income, expenditure, and debt level. The collective action related to these three items is generally known as fiscal policy. This policy, if the design and implement appropriately, can produce a significant effect on macroeconomic developments [1]. Effectiveness in utilizing the fiscal policy is depended on whether the policy initiators understand its process and effects or not. By launching this policy, without sufficient knowledge and background, one will face the difficulty in predicting the impacts and outcomes of this policy. Thus to overcome that difficulty, several studies via various methods are conducted to learn and understand this fiscal policy's impacts and outcomes.

Vector Autoregression (VAR) [2] is a useful method that has been employed by analysts to learn the impacts and outcomes of policies implemented within an economy. This method is generally used to identify sources of fluctuations, answer questions about unexpected changes, forecast, and predict the effect of such policies. Also, analysts can use this model to simplify analysis and to answer a specific question related to change expected in the future.

Comparing to the close economy, analyzing the effects of a particular change within an open economy is more complicated since this economy is linked to the external economies via, e.g., commodity market and capital market [3][4]. This implies that any change outside an economy can produce impacts on it. Also, the network of connection between countries can limit the capacity and efficiency of domestic policies in stabilizing the economy.

In the context of fiscal policy analysis which is the main objective of this work, there is a puzzle in the results of the model simulation, i.e., the effect of an expansionary fiscal policy tends to be inconclusive [5]. Three outcomes of an expansionary fiscal policy in the economy are possible which are positive (crowding-in), negative (crowding-out), and neutral outcome. For instance, when the model assumes households save nothing but consume all their current disposableincome, the level of consumption was likely positively response to government spending shocks[6]. Also, consumption habits can support the positive effect of government spending on consumption [7]. Corsetti et al., (2012)[8], for example, highlighted the effect of increasing government spending on a reduction in the interest rates which bolsters private consumption even as the investment is crowded out. In contrast, an expansionary fiscal policy may cause a reduction in household consumption. The work of Bilbiie (2011)[9] support this idea by showing that if the government subsidize its budget deficit by raising the tax, the reduction of household consumption could be the result. Also, Furceri & Sousa (2011)[10] who assess the relationship between private consumption growth and a change in the ratio of government consumption to GDP showed that government spending can lead to the crowdingout effects, i.e., it negatively impacts both private consumption and investment. Likewise, Kormilitsina & Zubairy (2018)[11] who investigated the result of the five distinct models of the government spending shock indicated the reduction of consumption in all estimated models. Similarly, the work of Lorusso & Pieroni (2019)[12] showed that even government spending has a positive effect on output, it induces a fall in private consumption. The puzzle of this government spending shock may be explained by the work of [13] who uncover from their study that fiscal policy shocks can produce different effects on consumption since those type of effects

are dependent on the wealth of consumer; i.e., these shocks tend to drop the consumption of the wealthy people while rising the consumption of the poor one [13].

The effects of an expansionary fiscal policy on others macroeconomic variables which were uncovered empirically include, e.g., an increase in government consumption, although, can lead to an improvement in the current account, it has a limited role in correcting large external imbalances [14]; government expenditure shocks can raise inflation, interest rates but reduce output in the long run [15][16]; government spending can raise employment and output [17]; although an expansionary fiscal policy shock can increased output immediately, its effects are temporary. Thus to keep the output growth, the government need to spend continuously [18]; expansionary fiscal policy shock can cause the prices down if consumers expect a reduction of social security in the future and reduce their consumption which in turn cause the prices down [18]; effect of fiscal policy on employment is a sector-specific [19], and the degree and direction of the fiscal impacts on economy are conditioned by period of policy implementation [20].

Motivated by the importance of fiscal policy and results discovered by previous studies, we are interested in studying the effected of this policy on some macro-level variables to learn its impacts and outcome so that we can provide the appropriate suggestions to bring this policy into action. Thus, to meet our objectives, we design this work to show the effects of fiscal policy shock on the economy by employing the VAR model. In what follows, we organize this work by the 5 main sections. In the next section, we will present the VAR model and the data used for estimation. In Section 3, the results obtained from the model estimation will be discussed. Then some policy recommendations will be carried out in Section 4. Finally, Section 5 will summarize this work.

2.Methodology:

To derive the model for analysis, let consider the following simple two-equation system

$$y_{1,t} = v_{10} + v_{12}y_{2,t} + a_{11}y_{1,t-1} + a_{12}y_{2,t-1} + e_{1,t}$$

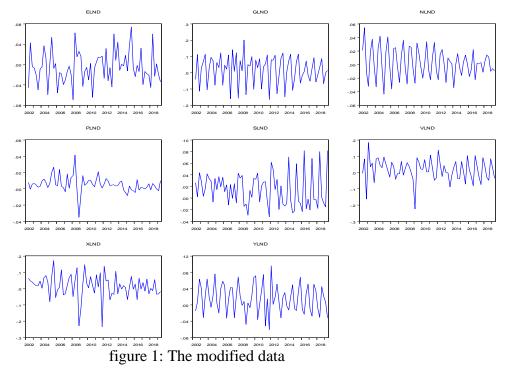
$$y_{2,t} = v_{20} + v_{21}y_{1,t} + a_{21}y_{1,t-1} + a_{22}y_{2,t-1} + e_{2,t}$$

which can be solved simultaneously to yield

$$\begin{bmatrix} y_{1,t} \\ y_{2,t} \end{bmatrix} = \begin{bmatrix} b_{10} \\ b_{20} \end{bmatrix} + \begin{bmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \end{bmatrix} \begin{bmatrix} y_{1,t-1} \\ y_{2,t-1} \end{bmatrix} + \begin{bmatrix} u_{1,t} \\ u_{2,t} \end{bmatrix},$$

where

$$b_{10} = \frac{v_{10} + v_{12}v_{20}}{(1 - v_{12}v_{21})}, \quad b_{20} = \frac{v_{20} + v_{21}v_{10}}{(1 - v_{21}v_{12})}, \quad b_{11} = \frac{(a_{11} + v_{12}a_{21})}{(1 - v_{12}v_{21})}, \quad b_{12} = \frac{(a_{12} + v_{12}a_{22})}{(1 - v_{12}v_{21})}, \quad u_{1,t} = \frac{v_{12}e_{2,t} + e_{1,t}}{(1 - v_{12}v_{21})}, \quad b_{21} = \frac{(v_{21}a_{11} + a_{21})}{(1 - v_{21}v_{12})}, \quad b_{22} = \frac{(v_{21}a_{12} + a_{22})}{(1 - v_{21}v_{12})}, \text{ and } \quad u_{2,t} = \frac{v_{21}e_{1,t} + e_{2,t}}{(1 - v_{21}v_{12})}.$$


We can write it in the abstract matric notation form as follow $\mathbf{y}_t = \mathbf{b} + \mathbf{B}\mathbf{y}_{t-1} + \mathbf{u}_t$,

which can be present in a general matrix notation with m variables and p lags as follow

$$y_{t} = v + A_{0}y_{t} + A_{1}y_{t-1} + A_{2}y_{t-2} + ... + A_{p}y_{t-p} + e_{t}$$
.

After manipulating, we have [21][22] $\mathbf{y}_t = \mathbf{b} + \mathbf{B}_1 \mathbf{y}_{t-1} + \mathbf{B}_2 \mathbf{y}_{t-2} + \dots + \mathbf{B}_p \mathbf{y}_{t-p} + \mathbf{u}_t$.

To estimate the model, we obtain the quarterly data of Thailand from the International Monetary Fund (IMF) database which cover a period of 2002Q1:2019Q2. We name these data series as follow. GLND = Government spending, ELND = Exchange rate in domestic currency, NLND = Employment, PLND = Domestic price, SLND = Domestic consumption, VLND = Domestic investment, XLND = Export, YLND = Output. These data series are then modified by taking a log and also first differences, and hence we obtain the data characterized as presented in Fig. 1. Accordingly, the result of Unit root test of each series based on Augmented Dickey-Fuller (ADF) test as showed in Table 1 indicate that these series are stationary.

Source: Author's presentation

Table 1: Aug	дпешей Dickey-г	iner test statistic unit r
Var.	t-statistic	P-value
ELND	-8.699304	.000
GLND	-10.16806	.000
NLND	-18.57132	.000
PLND	-5.234254	.000
SLND	-7.334712	.000
VLND	-9.081289	.000
XLND	-9.360238	.000
YLND	-7.510179	.000

 Table 1: Augmented Dickey-Fuller test statistic unit root test

Source: Author's calculation

3. Result and Discussion:

In this section, we will present and discuss what we discovered from the analysis. Firstly, we decide on the number of lags. Based on Final prediction error FPE, Akaike information criterion AIC, Schwarz information criterionSC, and Hannan-Quinn information criterion HQ, shown in Table 2, which assign difference number of lag, we design to use the minimum number of lags assigned by SC. Thus we will apply these two lags for subsequent calculation.

La	LogL	Lag Order Sei	FPE	AIC	SC	HQ
g	- 6			-		
0	1044.57 6	NA	1.18e-24	-32.393	-32.1232	-32.2867
1	1209.23 4	283.0053	5.16e-26	-35.5386	- 33.10982*	-34.5818
2	1324.19 1	168.8429	1.15e-26	-37.131	-32.5433	-35.3237
3	1436.32 6	136.6646	3.26e-27	-38.6352	-31.8887	-35.9774
4	1533.01 4	93.66618 *	1.99e- 27*	-39.6567	-30.7513	- 36.14839*
5	1613.41 1	57.78565	3.30e-27	- 40.16910*	-29.1048	-35.8103

Table 2: VAR Lag Order Selection Criteria

* indicates lag order selected by the criterion

Source: Author's calculation

Now we will show the result of Granger Causality Test [23] to judge whether or not the causality exits between the variables. From Table 3, we found 28 pairs of causality which show either one way or two-way short term relationship between variables indicated by $P \le 0.1$. Those results lead us to conclude that, e.g., GLND Granger Cause ELND, ELND Granger Cause GLND, ELND Granger Cause PLND, ELND Granger Cause SLND, ELND Granger Cause SLND, NLND Granger Cause GLND, GLND Granger Cause PLND, GLND Granger Cause GLND, The rests of the Granger Causality yield in **Table 3** can be read in this similar manner.

Next, the estimated results obtained from the Vector Autoregression model will be discussed. Corresponding to Table 4, we can write, e.g., that 1) the previous price PLND(-2), and output YLND(-1) and YLND(-2) are, at least 10 % level, significantly and negatively affect to output YLND, while employment NLND(-2), price PLND(-1), consumption SLND(-2) are, at least 10 % level, significantly and positively affect to output YLND; 2) Domestic price PLND was at least 10 % significantly and negatively affected by GLND(-2) and PLND(-2), while PLND(-1) and VLND(-2) are, at least 10 % level, significantly and positively affect to output YLND; 3) and

Exchange rate ELND was not significantly affected by any variable within this model. Also, it doesn't affect other variables. Hence the exchange rate is not relevant in this setting. Similar interpretations can be applied to Employment NLND, Domestic consumption SLND, Domestic investment VLND, and Export XLND. However, we will go straight to point out the effects of the fiscal policy expansion and conclude that 1) in the last period GLND(-1) affected negatively to the current level of SLND at 5 % of significant level and positively to the current level of NLND at 1 % of significant level and 2) government spending in the last two period GLND(-2) affected negatively to the current level of PLND at 10 % of significant level and current level of SLND at 1 % of significant level. However, it affected positively to the current level of NLND at 1 % of a significant level. The fiscal policy in the last periods did not significantly affect to exchange rate ELND and XLND.

Null		F-	P-		Null		F-	P-
Hypothe	esis:	Statistic	value		Hypothe	esis:	Statistic	value
GLND ELND	Dng	6.86016	0.0020	-	SLND NLND	Dng	1.78659	0.1760
ELND GLND	Dng	5.89772	0.0045		NLND SLND	Dng	0.95301	0.3912
NLND	Dng	2.14398	0.1258	-	VLND	Dng	1.57466	0.2152
ELND NLND	Dng	0.06622	0.9360		NLND VLND	Dng	4.10946	0.0211
PLND ELND	Dng	0.07363	0.9291	-	XLND NLND	Dng	1.65141	0.2001
ELND	Dng	4.22229	0.0191	_	NLND	Dng	6.33800	0.0031
SLND ELND	Dng	0.33438	0.7171		YLND NLND	Dng	0.79045	0.4582
ELND SLND	Dng	5.41751	0.0068		NLND YLND	Dng	9.05456	0.0004
VLND	Dng	0.33534	0.7164	-	SLND	Dng	0.96443	0.3868
ELND VLND	Dng	1.97363	0.1476		PLND SLND	Dng	0.36382	0.6965
XLND ELND	Dng	2.31853	0.1069	-	VLND PLND	Dng	0.99961	0.3739
ELND	Dng	7.33091	0.0014		PLND	Dng	2.52459	0.0883
YLND ELND	Dng	0.54339	0.5835	-	XLND PLND	Dng	0.20650	0.8140
ELND YLND	Dng	1.75807	0.1809		PLND XLND	Dng	21.4888	0.0000
NLND CL ND	Dng Dng	32.7083	0.0000	-	YLND PLND	Dng Dng	3.25702	0.0452 0.3046
GLND	Dng	10.2517	0.0001	_	rlnd	Dng	1.21190	0.3040

Table 3: Pairwise Granger Causality Tests

NLND				YLND			
PLND GLND	Dng	15.4249	0.0000	VLND SLND	Dng	6.79144	0.0022
GLND	Dng	7.56132	0.0012	SLND	Dng	2.15258	0.1248
SLND GLND	Dng	14.9066	0.0000	XLND SLND	Dng	0.64956	0.5258
GLND SLND	Dng	11.1318	0.0000	SLND XLND	Dng	6.46255	0.0028
VLND	Dng	3.03263	0.0554	YLND	Dng	1.40551	0.2529
GLND	Dng	1.01310	0.3690	SLND	Dng	2.67076	0.0772
VLND				YLND			
XLND	Dng	1.53636	0.2232	XLND	Dng	1.40237	0.2537
GLND				VLND			
GLND	Dng	0.03572	0.9649	VLND	Dng	4.22262	0.0191
YLND	Dng	10.9964	0.0000	YLND	Dng	12.7539	0.0000
GLND				VLND			
GLND	Dng	8.07951	0.0008	VLND	Dng	0.88199	0.4191
YLND	-			YLND	-		
PLND	Dng	2.45013	0.0946	YLND	Dng	2.94010	0.0603
NLND	Dng	5.57733	0.0059	XLND	Dng	8.99349	0.0004
PLND				YLND			
Dng Granger		bes not					

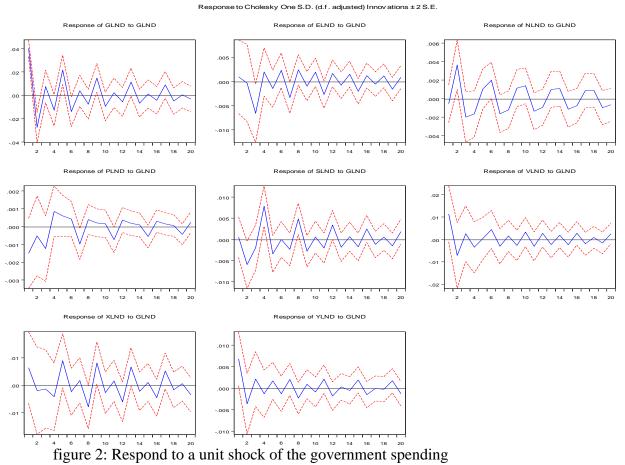
Source: Author's calculation

	GLND	ELND	NLND	PLND	SLND	VLND	XLND	YLND
GLND(- 1)	- 0.5957 23	- 0.0033 6	0.119 140	- 0.0074 65	- 0.1326 03	- 0.0990 84	0.083 408	- 0.0186 65
	(0.120	(0.093	(0.025	(0.024	(0.058	(0.154	(0.160	(0.077
	69)	05)	17)	30)	52)	43)	34)	85)
	[-	[-	[[-	[-	[-	[[-
	4.9361	0.0361	4.7341	0.3071	2.2658	0.6416	0.5202	0.2397
	4]	2]	8]	9]	8]	3]	1]	6]
	{0.000	{0.971	{0.000	{0.758	{0.024	{0.521	{0.603	{0.810
	0}	2}	0}	9}	0}	5}	2}	6}
GLND(-	-	-	0.037	-	-	0.094	-	0.047

	GLND	ELND	NLND	PLND	SLND	VLND	XLND	YLND
2)	0.1656 33	0.0968 88	432	0.0359 4	0.2674 58	671	0.0367 38	749
	(0.105 26)	(0.081 15)	(0.021 95)	(0.021 19)	(0.051 04)	(0.134 68)	(0.139 83)	(0.067 89)
	[- 1.5736 3]	[- 1.1939 2]	[1.7054 8]	[- 1.6956 9]	[- 5.2402 3]	[0.7029 3]	[- 0.2627 3]	[0.7033 0]
	{0.116 4}	{0.233 2}	{0.088 9}	{0.090 7}	{0.000 0}	{0.482 5}	{0.792 9}	{0.482 3}
ELND(- 1)	0.238 309	0.039 785	0.013 909	- 0.0239 8	- 0.1306 07		0.371 290	- 0.0029 63
	(0.178 17)	(0.137 37)	(0.037 15)	(0.035 88)	(0.086 40)		(0.236 70)	
	[1.3375 4]	[0.2896 2]	[0.3743 8]	[- 0.6684 0]	[- 1.5117 2]	[- 0.4599 1]	[1.5685 8]	[- 0.0257 8]
	{0.181 8}	{0.772 3}		{0.504 3}	{0.131 4}		{0.117 5}	
ELND(- 2)	0.194 325	0.079 857	0.021 177	- 0.0521 28	0.071 374	0.153 017	- 0.2890 74	- 0.1252 21
	(0.190 35)	(0.146 76)		(0.038 33)		(0.243 57)		
	[1.0208 8]	[0.5441 4]	[0.5335 2]	[- 1.3599 8]	[0.7732 5]	[0.6282 3]	[- 1.1430 9]	[- 1.0198 5]
	{0.307 9}	{0.586 7}	{0.594 0}	{0.174 6}	{0.439 8}	{0.530 2}	{0.253 7}	{0.308 4}
NLND(- 1)	0.334 143	- 0.2964 48	- 0.2813 19	- 0.1032 33	0.367 268	- 1.1072 67	0.813 562	0.313 355
	(0.510 99)	(0.393 97)	(0.106 55)	(0.102 90)	(0.247 78)	(0.653 84)	(0.678 86)	(0.329 61)
	[0.6539 1]	[- 0.7524 7]	[- 2.6401 6]	[- 1.0032 8]	[1.4822 1]	[- 1.6934 7]	[1.1984 1]	[0.9507 0]
	{0.513	{0.452	{0.008	{0.316	{0.139	{0.091	{0.231	{0.342

	GLND	ELND	NLND	PLND		VLND	XLND	YLND
	5}	2}	6}	3}	1}	1}	5}	3}
NLND(- 2)	- 1.1716 06	0.025 840	- 0.1985 66	0.0473 66	0.723 235	0.737 946	0.354 285	
	(0.459 96)	(0.354 63)	(0.095 91)	(0.092 62)				
	[- 2.5471 8]	[0.0728 7]	[- 2.0702 7]	[0.5114 0]	[3.2426 3]	[1.2538 4]	[0.5797 7]	[2.4856 4]
	{0.011 2}	{0.941 9}	{0.039 1}	{0.609 4}			{0.562 4}	{0.013 3}
PLND(- 1)	0.694 353	- 0.1316 39		0.4268 42	0.578 826	3.086 347	3.887 385	0.893 636
	(0.788 41)	(0.607 86)	(0.164 40)	(0.158 76)				
	[0.8807 0]	[- 0.2165 6]	[3.3420 1]	[2.6886 2]	[1.5140 3]	[3.0593 5]		17
	{0.379 0}	{0.828 7}	{0.000 9}	{0.007 5}	{0.130 8}	{0.002 4}	{0.000 2}	{0.079 6}
PLND(- 2)	0.213 859	0.715 797	- 0.4270 44		- 0.6014 92	- 0.5657 75	- 2.7362 97	
	(0.835 51)	(0.644 17)	(0.174 22)	(0.168 24)	(0.405 15)	(1.069 09)	(1.110 00)	(0.538 93)
	[0.2559 6]	1.1111	2.4511	[- 2.1498 2]	1.4846	0.5292	2.4651	
	{0.798 1}		{0.014 7}	{0.032 2}				
SLND(- 1)	1.372 526	0.039 042	0.038 018	- 0.0281 94	- 0.2500 54	- 0.4077 75	0.192 339	
	(0.253 06)	(0.195 11)	(0.052 77)	(0.050 96)				•
	[5.4237	[0.2001		[- 0.5532				[1.0941

	GLND	ELND	NLND	PLND	SLND	VLND	XLND	YLND
	2]	1]	6]	8]	4]	2]	0]	4]
	{0.000 0}	{0.841 5}	{0.471 7}	{0.580 4}	{0.042 2}	{0.208 7}	{0.567 6}	{0.274 6}
SLND(- 2)	0.023 290	0.152 939	0.041 064	0.0670 55	- 0.0321 22	0.646 282		0.363 218
	(0.290 40)	(0.223 90)	(0.060 56)	(0.058 48)				
	[0.0802 0]	[0.6830 8]	[0.6781 2]	[1.1467 0]	[- 0.2281 1]	-	[0.1593 5]	[1.9390 3]
	{0.936 1}	{0.494 9}		{0.252 2}	{0.819 7}		{0.873 5}	
VLND(- 1)	- 0.0332 94			0.0183 24	0.111 480	- 0.1695 68	0.200	
	(0.118 81)	(0.091 60)	(0.024 77)	(0.023 92)		(0.152 02)	(0.157 84)	
	[- 0.2802 4]	[0.5076 8]	[2.8325 6]	[0.7659 4]	[1.9350 9]	[- 1.1154 4]	[1.6257 6]	[1.0637 4]
	{0.779 4}	{0.612 0}	{0.004 9}	{0.444 2}	{0.053 7}	{0.265 3}	{0.104 8}	{0.288 1}
VLND(- 2)	0.033 478	0.052 502	0.030 382	0.0366 07	0.198 488	- 0.0534 17	0.067 965	0.050 562
	(0.098 37)			(0.019 81)			(0.130 69)	•
	[0.3403 2]	[0.6922 4]	[1.4811 3]	[1.8480 7]	[4.1610 9]	[- 0.4243 8]	[0.5200 5]	[0.7968 5]
	{0.733 8}	{0.489 2}	{0.139 4}	{0.065 3}	{0.000 0}	{0.671 5}	{0.603 3}	{0.426 0}
XLND(- 1)	- 0.1744 35	- 0.0411 45	- 0.0145 89	- 0.0185 78			- 0.4747 06	- 0.0238 82
	(0.136 99)	(0.105 62)		(0.027 58)				•


	GLND	ELND	NLND	PLND	SLND	VLND	XLND	YLND
	[-	[-	[-	[-	[[[-	[-
	1.2733	0.3895	0.5107	0.6734	0.3411	0.0759	2.6083	0.2702
	6]	7]	4]	8]	4]	9]	8]	8]
	{0.203	{0.697	{0.609	{0.501	{0.733	{0.939	{0.009	{0.787
	6}	1}	8}	0}	2}	5}	4}	1}
XLND(- 2)	- 0.3187 47	- 0.0948 14	- 0.0583 87	0.0098 05	- 0.0288 96	- 0.2424 37	- 0.1897 49	0.110 631
	(0.136 56)	(0.105 28)	(0.028 48)	(0.027 50)	(0.066 22)	(0.174 73)		
	[-	[-	[-	[[-	[-	[-	[
	2.3342	0.9005	2.0504	0.3565	0.4363	1.3874	1.0459	1.2559
	0]	6]	7]	9]	9]	8]	2]	9]
	{0.020	{0.368	{0.041	{0.721	{0.662	{0.166	{0.296	{0.209
	1}	4}	0}	6}	8}	1}	2}	9}
YLND(- 1)	- 0.2630 02	- 0.1332 6		0.0449 25	- 0.1069 79	0.447 766	0.096 703	- 0.3246 69
	(0.255 19)	(0.196 75)	(0.053 21)	(0.051 39)	(0.123 75)	(0.326 54)	(0.339 03)	
	[-	[-	[-	[[-	[[[-
	1.0306	0.6773	3.3612	0.8742	0.8645	1.3712	0.2852	1.9723
	0]	0]	8]	5]	1]	6]	3]	6]
	{0.303 4}	{0.498 6}		{0.382 5}			{0.775 6}	{0.049 3}
YLND(- 2)	0.702 125	- 0.1165 35	0.055 497	- 0.0433 32		0.123 557	0.115 894	- 0.5396 92
	(0.291	(0.224	(0.060	(0.058	(0.141	(0.373	(0.387	(0.188
	54)	78)	79)	71)	37)	05)	32)	06)
	[[-	[[-	[[[[-
	2.4083	0.5184	0.9128	0.7381	0.3861	0.3312	0.2992	2.8698
	1]	5]	8]	1]	8]	1]	2]	6]
	{0.016	{0.604	{0.361	{0.460	{0.699	{0.740	{0.764	{0.004
	5}	4}	9}	9}	6}	7}	9}	3}
С	0.013 366	- 0.0035	- 0.0005 29	0.0042 90	0.019 330	- 0.0022 98	0.002 695	0.017 671

	GLND	ELND	NLND	PLND	SLND	VLND	XLND	YLND
	(0.008	(0.006	(0.001	(0.001	(0.004	(0.011	(0.011	(0.005
	74)	74)	82)	76)	24)	19)	61)	64)
	[[-	[-	[[[-	[[
	1.5289	0.5192	0.2903	2.4369	4.5600	0.2054	0.2320	3.1338
	3]	7]	7]	8]	7]	2]	3]	7]
	{0.127	{0.603	{0.771	{0.015	{0.000	{0.837	{0.816	{0.001
	1}	9}	7}	2}	0}	3}	6}	9}
R-	0.836	0.247	0.876	0.4709	0.660	0.556	0.584	0.600
squared	671	159	789	57	004	936	583	645
F-statistic	16.00	1.025	22.23	2.7818	6.066	3.928	4.397	4.700
	814	943	792	92	280	149	560	122
Akaike AIC	- 3.3746 63	- 3.8948 28	- 6.5100 67	- 6.5799 32	- 4.8222 47	- 2.8816 24	- 2.8065 18	- 4.2515 64
Schwarz SC	- 2.8152 64	- 3.3354 28	- 5.9506 67	- 6.0205 33	- 4.2628 48	- 2.3222 25	- 2.2471 18	- 3.6921 64

* Standard errors in () & t-statistics in [] & P-value in { } Source: Author's calculation

Source: Author's calculation

To visualize the effects of an expansionary fiscal policy, we conducted the impulse response analysis which produces the results as shown in Fig. 2. Here we can observe that a unit shock of government spending can initially push up the level of exchange rate ELND, investment VLND, export XLND, and output YLND, while initially push down domestic price PLND, domestic consumption SLND but initially unaffected to employment NLND. However, all of these variables jump above and decline periodically to their equilibrium.

Source: Author's presentation

To have an idea about the proportions of variation of each variable caused by fiscal policy shock, we conducted the variance decomposition analysis over 10 quarters showed in Table 4. According to table 4, it shows that, in the first period, all variables are affected by this fiscal policy shock. For instance, of 100 % of the variation in the first period, about 0.095 % of ELND, 0.437 % of NLND, 3.449 % of PLND, 0.07 % of SLND, 4.88 % of VLND, 1.434 % of XLND, 6.876 % of YLND variation are caused by the fiscal policy shock. The interpretation for the successive Quarters can be done in the same way. Also to interpret the composition of variation in other variables, one can do similarly.

Table 5: Variance Decomposition

1 avi	Table 5. Variance Decomposition										
Quarter	S.E.	GLND	ELND	NLND	PLND	SLND	VLND	XLND	YLND		
	Variance Decomposition of										
GLND:											
1	0.04	100.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		
4	0.06	66.07	1.06	2.78	4.38	12.85	4.66	4.76	3.45		
6	0.07	63.97	1.11	2.19	4.03	14.04	4.65	5.49	4.51		
8	0.08	59.17	1.49	3.88	4.03	14.71	5.24	5.90	5.59		

Quarter	S.E.	GLND	ELND	NLND	PLND	SLND	VLND	XLND	YLND	
10	0.08	57.98	1.61	3.49	3.91	14.83	5.17	6.34	6.69	
Variance Decomposition of ELND:										
1	0.03	0.10	99.91	0.00	0.00	0.00	0.00	0.00	0.00	
4	0.03	4.43	89.04	0.58	1.14	1.03	0.19	2.99	0.61	
6	0.03	4.98	86.95	0.86	1.65	1.52	0.20	2.99	0.85	
8	0.03	6.30	84.34	0.89	1.65	2.30	0.31	3.15	1.06	
10	0.03	6.59	83.21	1.11	1.64	2.64	0.41	3.18	1.21	
Variance Decomposition of NLND:										
1	0.01	0.44	4.40	95.16	0.00	0.00	0.00	0.00	0.00	
4	0.013	12.52	2.59	48.56	10.23	3.42	2.65	8.23	11.80	
6	0.01	12.91	2.34	43.96	10.55	3.14	2.72	9.12	15.26	
8	0.02	13.10	2.33	40.19	10.73	3.14	2.90	10.11	17.51	
10	0.016	13.11	2.22	37.97	10.86	2.90	3.03	10.71	19.22	
Variance Decomposition of PLND:										
1	0.01	3.45	0.37	0.55	95.63	0.00	0.00	0.00	0.00	
4	0.01	4.93	9.93	1.28	77.01	1.72	3.31	1.08	0.73	
6	0.01	5.31	9.92	2.57	74.74	1.74	3.34	1.58	0.81	
8	0.01	6.22	9.64	2.73	73.07	2.14	3.30	1.87	1.04	
10	0.01	6.19	9.60	3.15	72.22	2.14	3.32	2.11	1.27	
Variance Decomposition of SLND:										
1	0.02	0.07	1.88	5.36	21.11	71.58	0.00	0.00	0.00	
4	0.03	14.31	5.26	10.03	12.75	40.21	15.58	0.38	1.49	
6	0.03	13.73	5.25	8.72	11.36	39.66	17.47	2.04	1.76	
8	0.03	15.92	5.34	8.55	10.64	37.03	17.78	2.18	2.56	
10	0.03	15.85	5.23	8.22	10.06	36.91	17.81	2.77	3.14	
Variance Decomposition of VLND:										
1	0.052	4.89	5.34	0.23	3.21	6.53	79.81	0.00	0.00	
4	0.07	4.75	8.47	1.52	16.24	6.50	52.73	2.71	7.08	

PJAEE, 17(12) (2020)

Quarter	S.E.	GLND	ELND	NLND	PLND	SLND	VLND	XLND	YLND	
6	0.07	4.89	8.55	2.41	15.67	6.62	50.36	2.60	8.90	
8	0.07	4.94	8.59	2.48	15.50	7.15	48.70	2.59	10.05	
10	0.07	5.15	8.59	3.06	15.38	7.14	47.38	2.59	10.72	
Variance Decomposition of XLND:										
1	0.05	1.44	0.27	0.03	15.13	6.66	11.76	64.72	0.00	
4	0.07	1.37	6.25	3.15	28.44	5.34	7.83	47.53	0.10	
6	0.07	2.96	6.51	3.45	27.04	6.64	7.37	45.72	0.30	
8	0.07	4.09	6.44	4.75	26.30	6.73	7.11	44.01	0.56	
10	0.07	5.26	6.39	4.66	25.50	7.52	6.90	42.81	0.96	
Variance Decomposition of YLND:										
1	0.03	6.88	1.48	0.01	9.76	11.61	5.93	28.84	35.49	
4	0.03	6.83	5.51	1.19	15.28	8.69	5.51	23.68	33.30	
6	0.03	6.74	5.46	1.68	14.48	9.46	5.38	22.07	34.73	
8	0.03	7.23	5.67	1.75	14.10	8.99	5.37	21.12	35.76	
10	0.03	7.06	5.46	2.56	13.76	9.21	5.42	20.49	36.05	

Source: Author's calculation

4. Policy Recommendations:

According to the results of Vector Autoregression Estimation which showed the reduction of consumption SLND caused by government spending in the last period GLND (-1) and the reduction of domestic price PLND and consumption SLND caused by government spending in the last two periods GLND (-2), we recommend that government authority should put the forward-looking perspective or expectation dimensions in designing the current policy. However, the results obtained from the impulse response analysis which show the reactions to a unit shock of government spending convince us to suggest that government authority should conduct an expansionary fiscal policy to encounter an economic recession since it can encourage investment VLND, export XLND, and output YLND.

5. Conclusions:

Fiscal policy is a crucial tool for government authority for stabilizing the economy. To use this tool effectively, the analysts need to understand its effect on the economy. An essential method that the analysts can employ to understand such effect of the policy is Vector autoregression (VAR) which allow the analysts to investigate simultaneously the effect of particular change and responses of various variables. Follow several previous works conducted to study the effect of this fiscal policy shock, this work presents the effects of this shock on Thailand's economic

environment. The model used to analyze those effects is the usual vector autoregression (VAR) model with the quarterly modified data of Thailand, 2002:Q1-2019:Q2. We formulated the model that shows the connection and interactions between domestic variables (Government spending, Domestic price, consumption, investment, Employment, and Output) and the international related one (Export and Exchange rate) to present an open economy environment. In particular, this model is utilized to highlight the effects of fiscal policy shock on these variables. The results from this work showed that 1) government spending in the last period GLND (-1) affected negatively to the current level of consumption SLND at 5 % of significant level and positively to the current level of employment NLND at 1 % of significant level; 2) government spending in the last two period GLND(-2) affected negatively to the current level of domestic price PLND at 10 % of significant level and current level of consumption SLND at 1 % of significant level. However, it affected positively to the current level of employment NLND at 10 % of a significant level; and 3) fiscal policy in the last periods did not significantly affect to exchange rate ELND and export XLND. The results gained from variance decomposition and the impulse response analysis showed that a unit shock of government spending can 1) initially drive up the level of exchange rate ELND, investment VLND, export XLND, and output YLND, 2) initially drive down domestic price PLND and consumption SLND; 3) unaffected initially to employment NLND. However, all of these variables jump above and decline periodically to their equilibrium. According to the results produced from this work, we hence recommend the government authority to take into consideration the expectation dimension when designing the current fiscal policy. Also, it needs to launch a fiscal expansion policy to encounter an economic recession, while taking into account the crowding-out effect.

Initiatively, this work was designed to contribute to theeconomic policy designers in taking consideration into a more holistic picture of the interaction effect between fiscal policy action, domestic and foreign variables, as well as the delay effect of their interaction which can deviate the effect of this fiscal policy. Although this research framework tries to include variables that are most possible impacted by fiscal policy, it still uncovers the reactions that might be emerged from the monetary related policy variables. Therefore, it should be a chance for researchers who know this interaction and interest in continuing this line of research.

6. Acknowledgements:

This research is supported by the school of economics, SukhothaiThammathirat Open University (STOU), Thailand. This work is also supported by the Department of Economics, The University of Central Thailand (UCT), Thailand.

REFERENCES:

- [1] M. Deskar-Škrbić, Dynamic effects of fiscal policy in Croatia: confronting New-Keynesian SOE theory with empirics, ZbornikradovaEkonomskog fakulteta u Rijeci: časopis za ekonomsku teorijuipraksu, 36(1), 2018, 83–102.
- [2] C. A. Sims, Macroeconomics and reality, Econometrica: journal of the Econometric Society, 48(1), 1980, 1–48.
- [3] J. A. Frenkel and M. L. Mussa, Monetary and fiscal policies in an open economy, National Bureau of Economic Research, 1980, 0898–2937.
- [4] R. Dornbusch and S. Fischer, The open economy: implications for monetary and fiscal policy, in The American business cycle: Continuity and change, University of Chicago Press, 1986, 459–516.

- [5] A. Nandi, Indian Fiscal Policy: A DSGE Primer, The Journal of Developing Areas, 54(2), 2020, 179-200.
- [6] G. Coenen and R. Straub, Does government spending crowd in private consumption? Theory and empirical evidence for the euro area,International Finance, 8(3), 2005, 435–470.
- [7] G. J. Natvik, Government Spending Shocks and Rule-of-Thumb Consumers with Steady-State Inequality, The Scandinavian Journal of Economics, 114(4), 2012, 1414–1436.
- [8] G. Corsetti, A. Meier, and G. J. Müller, Fiscal stimulus with spending reversals, Review of Economics and Statistics, 94(2), 2012, 878–895.
- [9] F. O. Bilbiie, Nonseparable preferences, frisch labor supply, and the consumption multiplier of government spending: One solution to a fiscal policy puzzle, Journal of Money, Credit and Banking, 43(1), 2011, 221–251.
- [10] D. Furceri and R. M. Sousa, Does government spending crowd out private consumption and investment?, World Economics, 12(4), 2011, 153–170.
- [11] A. Kormilitsina and S. Zubairy, Propagation mechanisms for government spending shocks: A bayesian comparison, Journal of Money, Credit and Banking, 50(7), 2018, 1571–1616.
- [12] M. Lorusso and L. Pieroni, Disentangling Civilian and Military Spending Shocks: A Bayesian DSGE Approach for the US Economy, Journal of Risk and Financial Management, 12(3), 2019, 1-41.
- [13] E. Anderson, A. Inoue, and B. Rossi, Heterogeneous consumers and fiscal policy shocks, Journal of Money, Credit and Banking, 48(8), 2016, 1877–1888.
- [14] S. A. Abbas, J. Bouhga-Hagbe, A. Fatás, P. Mauro, and R. C. Velloso, Fiscal policy and the current account,IMF Economic Review, 59(4), 2011, 603–629.
- [15] O. Parkyn and T. Vehbi, The effects of fiscal policy in New Zealand: Evidence from a VAR model with debt constraints, Economic Record, 90(290), 2014, 345–364.
- [16] B. P. Makhoba, I. Kaseeram, and L. Greyling, Assessing the impact of fiscal policy on economic growth in South Africa, African Journal of Business and Economic Research, 14(1), 2019, 7–29.
- [17] U. Unal, The Unemployment Effects of Fiscal Policy in Netherlands, MPRA Paper No. 81433,2015, 1-17.
- [18] K. P. Otsubo, The Effects of Fiscal and Monetary Policies in Japan: What Combination of Policies Should Be Used?, Journal of International Commerce, Economics and Policy, 9(2), 2018, 1-18.
- [19] C. Bredemeier, F. Juessen, and R. Winkler, Fiscal policy and occupational employment dynamics, Journal of Money, Credit and Banking, 52(6), 2020, 1527–1563.
- [20] I. Roșoiu, Fiscal Policy in Emerging Economies Romania, Poland, Hungary, Czech Republic, Revista de Management Comparat International, 20(3), 2019, 279–285.
- [21] W. M. Lupoletti and R. H. Webb, Defining and improving the accuracy of macroeconomic forecasts: contributions from a VAR model, Journal of Business, 9(2), 1986, 263–285.
- [22] M. Kremer, Macroeconomic effects of financial stress and the role of monetary policy: a VAR analysis for the euro area, International Economics and Economic Policy, 13(1), 2016, 105–138.
- [23] C. W. Granger, Investigating causal relations by econometric models and cross-spectral methods, Econometrica: journal of the Econometric Society, 37(3), 1969, 424–438.