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ABSTRACT
A disconformity and lag deposit that separates the Tallahatta and Lisbon Formations 
along Pigeon Creek near Red Level, Conecuh-Covington Counties, Alabama contains 
osteichthyan remains belonging to: Pycnodus sp.; Lepisosteus sp.; Albula sp.; Egertonia 
isodonta Cocchi, 1864; Cylindracanthus rectus Agassiz, 1843; Sphyraena sp.; Triciurides 
cf. T. sagittidens Winkler, 1874; Scomberomorus sp.; Ariidae gen. indet.; Ostraciidae 
gen. indet., and cf. Beryciformes. This fossil osteichthyan assemblage is similar to other 
contemporaneous nearshore faunas found throughout Alabama, the Atlantic and Gulf 
Coastal Plains, and elsewhere throughout the Northern Ocean Basin. The accumulation 
and concentration of osteichthyans between the Tallahatta and Lisbon Formations is the 
result of third order eustatic sea level fluctuation and reflects a complex taphonomic his-
tory of exhumation, transport, and reburial across a shallow, middle Eocene shelf. Wide 
spread distribution of osteichthyan genera found in the Pigeon Creek assemblage dem-
onstrates the continuity of shallow marine shelf environments of the Northern Atlantic 
Ocean Basin during the middle Eocene and the utility of osteichthyans in regional and 
transatlantic stratigraphic studies.
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Introduction 

For well over one hundred and fifty years, the 
occurrence of fossil fish from the Eocene of Ala-
bama has been known (White, 1956). Historical-
ly, these fossil fish specimens derive from bluffs 
and cliffsides along the Alabama and Tombigee 
Rivers and their associated tributaries that are 
centered near Clarke and Monroe Counties (e.g., 
Leidy, 1856, Woodward, 1891; White, 1956). 
Outcrops are abundant in this region of south-
western Alabama and are the products of water 
erosion, downcutting, and the regional drainage 
network into Mobile Bay. The stratigraphy and 
paleontology of this area was originally figured 
and described by Charles Lyell in (1846) while 
studying the continuity of Eocene formations 
between Georgia and Alabama. 

The correlative properties of fish fauna in 
tracing contemporaneous strata between Ala-
bama and other states across the Atlantic and 
Gulf Coastal Plains was first recognized by 
Leidy (1856) in describing the occurrence of 
the genus Cylindracanthus. Subsequent stud-
ies by Woodward (1891); Fowler (1911); Leriche 
(1942) and Thurmond & Jones (1981) built upon 
Leidy’s earlier interpretations and documented 
the occurrence of additional genera including: 
Sphyraena, Arius, and Albula during the Paleo-
cene and Eocene in multiple Atlantic and Gulf 
coastal plain states. More recent studies extend-
ed this distribution even further and many Ear-
ly and Middle Cenozoic fish from North Ameri-
can have a broad Northern Atlantic Ocean 
distribution across Greenland, Western Eu-
rope and North Africa (e.g., De Beaufort, 1926; 
White, 1926; Bendix-Almgreen, 1969; Kemp et 
al., 1990; Murray, 2000; Van den Eeckhaut, pers 
comm.). This distribution is thought to reflect 
closer proximity of landmasses, greater unifor-
mity of sea surface temperatures, and continu-
ity of shallow marine shorelines throughout the 
ancestral Northern Atlantic Ocean Basin (Smith 
et al., 1994; Scotese et al., 1998; Hooks et al., 
1999; Weems, 1999).     

In this paper, we describe an unreported 
middle Eocene (Lutetian) osteichthyan assem-
blage from a shallow marine lag deposit that 
separates the Tallahatta and Lisbon Formations 
along Pigeon Creek, Conecuh-Covington Coun-
ties, Alabama (Figure 1). The Pigeon Creek lag 
assemblage is the product of third order sea 
level cyclicity and resembles other osteichthy-

an assemblages reported in contemporaneous 
strata throughout the Atlantic and Gulf Coastal 
Plains and elsewhere in the Northern Atlantic 
Ocean Basin. Accordingly, the Pigeon Creek os-
teichthyans and associated lag have important 
implications for biostratigraphic and sequence 
stratigraphic correlative studies throughout the 
Northern Atlantic Ocean Basin during the mid-
dle Eocene.  

Geology of Pigeon Creek, Conecuh-
Covington Counties, South-central 
Alabama 

Alabama’s Cenozoic formations crop out in a 
belt running east-west and northwest-southeast 
through the south central portion of the state 
(Figure 1). This outcrop belt reflects marine 
inundation of topographically low-lying areas 
in the Gulf Coastal Plain during the Late Cre-
taceous and Cenozoic (Toulmin & La Moreaux, 
1963; Ivany, 1998; Manning, 2003; Savrda et al., 
2005; 2010). Eocene sediments in Alabama are 
represented by the upper Wilcox, Claiborne, 
and Jackson Groups. These groups are divided 
from oldest to youngest into the Hatchetig-
bee, Tallahatta and Lisbon, Yazoo Clay, Crystal 
River and Moody’s Branch Formations as well 
as numerous members, units, and beds (Szabo 
et al., 1988; Mancini & Tew, 1991; 1994; Ivany, 
1998).   

Pigeon Creek is a tributary to the Sepulga Riv-
er that flows southward through Butler, Conecuh, 
and Covington Counties and between Routes 55 
and 84. Water erosion along Pigeon Creek has 
exposed numerous sections of the upper Talla-
hatta formation, lower Lisbon Formation, and 
the contact horizon. In an outcrop along Pigeon 
Creek, the upper Tallahatta Formation consists 
primarily of greenish-gray, siliceous, sandy clay-
stone while the lower part of the Lisbon Forma-
tion consists of coarse, glauconitic sands with 
interbedded, silty and glauconitic claystone and 
abundant Thalassinoides burrows (Figure 1). 
The Thalassinoides burrows form an erosion-
resistant hardpan that crops out in multiple loca-
tions along Pigeon Creek and can be subaerially 
exposed during times of lower water flow. The 
Tallahatta and Lisbon Formations are separated 
by a disconformity and basal lag deposit that 
varies between 15 and 25 cm thick. The macro-
fossil lag is a quartz, glauconite sand containing 
original shell material and steinkerns belonging 
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Figure 1. Location maps of the Pigeon Creek field locality and Tallahatta-Lisbon Formation Contact (middle Eocene), 
Conecuh-Covington Counties, Red Level, Alabama. 1) Distribution of Eocene Gulf and Atlantic Coastal Plain osteichthyan 
localities discussed in this study: A, eastern Texas (Breard & Stringer, 1999); B, western Texas (Westgate, 1989); C, west 
central Louisiana (Stringer, 2002); D, east central Louisiana (Breard & Stringer, 1995); E, west central Mississippi (Breard, 
1991); F, east central Mississippi (Case, 1994); G, H, I, central Alabama (White, 1956; Clayton et al., 2013; This study); J, central 
Georgia (Case & Borodin, 2000b); K, Southeastern North Carolina (Case & Borodin, 2000a); L, Virginia, (Weems, 1999); M, 
New Jersey, (Fowler, 1911); 2 and 3) Stratigraphic column and geologic map of Covington County (southwestern Alabama) 
study area (modified from Osborne et al., 1989); 4) Detailed geologic map of the Tallahatta-Lisbon Formation contact along 
Pigeon Creek as seen in Figure 1.5 and discussed in text; 5) Outcrop exposure of the upper Tallahatta and lower Lisbon 
Formations along Pigeon Creek, Conecuh-Covington Counties, Red Level, Alabama. Note prominent disconformity directly 
above creek level and 1 meter shovel. Location of the Tallahatta-Lisbon Formation contact; 6) Large scale Thalassinoides 
burrows in exposure of the lower Lisbon Formation along Pigeon Creek.
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to oysters, bivalves, gastropods, and invertebrate 
ichnofossil casts, in addition to bones and teeth 
from chondrichthyans, osteichthyans, reptiles, 
and marine mammals. 

Multiple sources including: Bandy (1949; 
planktonic foraminifera); Toulmin (1977; mol-
lusks); Siesser (1983; calcareous nannofossil zo-
nation); Bybell & Gibson (1985; core hole data); 
Szabo et al. (1988; geologic mapping), and Man-
cini & Tew (1994) and Ivany (1998; sequence 
stratigraphy) indicated that the age of the upper 
Tallahatta and lower part of the Lisbon Forma-
tions belongs to the lower part of the middle 
Eocene and Lutetian Stage Boundary.

This is also consistent with the known ages 
and stratigraphic occurrences of chondrichthy-
ans and osteichthyans recovered from the Pi-
geon Creek locality and described in this report 
(Maisch et al., 2015). 

Several other localities across western and 
central Alabama provide additional outcrop ex-
posures of these formations, the contact horizon 
and vertebrate fossils concentrated within a lag 
deposit  (White, 1956; Holman & Case, 1988; 
Breard & Stringer, 1999; Westgate, 1989; 2001; 
Clayton et al., 2013; Maisch et al., 2014). These 
outcrop exposures extend across 200 kilometers 
between Silas in Choctaw County along Turkey 
Creek and Andalusia in Covington County just 
below the Point A Dam. Currently, little or no 
evidence of this lag exists in southeastern Ala-
bama where the Tallahatta and Lisbon Forma-
tions are thinner, more extensively eroded, and 
reflect more distal deposition relative to the an-
cestral shoreline. 

Field and Laboratory Methods

Osteichthyan fossils described in this report 
were recovered over three field seasons directly 
from the lag separating the upper Tallahatta 
and lower part of the Lisbon Formations along 
Pigeon Creek. Areas in Pigeon Creek, immedi-
ately adjacent to the Tallahatta–Lisbon Forma-
tion contact, were also collected and represent 
accumulations of fossil fish remains eroded di-
rectly out of the lag and hydrodynamically con-
centrated nearby in deeper pools. These deeper 
pools were also collected via scuba diving and 
required float bags to retrieve accumulations of 
locally eroded lag sediments. Outcrop sediment 
and creek accumulations were sieved on site 
with screens ranging from 10.0-5.0 mm. 

Approximately 200 kg of sediment was re-
covered for laboratory sieve analysis. In the lab, 
sediment was thoroughly washed through pro-
gressively finer meshed screens ranging from 
5.0 to 0.5 mm and dried under heat lamps. Teeth 
were removed using a magnifying glass and im-
aged directly with an Olympus SZ61 Binocular 
Microscope attached to an Infinity–2 Digital 
Camera. Osteichthyan remains were identified 
by comparison with well-known regional and 
international literature including: Thurmond & 
Jones, 1981, Weems, 1998; 1999; Westgate, 2001. 
Reposited osteichthyan remains described in 
this report were selected from an assemblage of 
over 500 specimens and are included in the col-
lections of the New Jersey State Museum with 
the catalogue numbers: NJSMGP 24036-24046.

Systematic Paleontology 
 

Class Osteichthyes Huxley, 1880
Subclass Actinopterygii Klein, 1885
Order Pycnodontiformes Berg, 1940
Family Pycnodontidae Agassiz, 1833

Genus Pycnodus Agassiz, 1833
Pycnodus sp.

 
Figure 2: 1-2 

Referred Material – One molariform tooth: 
NJSMGP: 24037

Description – In occlusal view, the tooth is ir-
regularly oval-shaped and displays a large wear 
facet. In basal view, the tooth exposes a concave 
pulp cavity and thick enamel.

Discussion – The teeth of Pycnodus can be 
readily distinguished from those of phyllodonts 
that have more concentric teeth that are stacked 
in tooth files for continuous replacement dur-
ing the animal’s lifetime (Estes, 1969; Nursall, 
1999a; 1999b). The Albula teeth in the Pigeon 
Creek assemblage are more circular, have thin-
ner enameloid, and a shallower pulp cavity than 
those of Pycnodus. Pycnodonts are well adapt-
ed for shell-crushing lifestytes and are known 
from shallow-marine, patch-reef environments, 
particularly those with abundant molluscs and 
arthropods (e.g., Estes, 1969; Case & Schwim-
mer, 1988; Nursall, 1996; Poyato-Ariza & Wenz, 
2002). 
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Figure 2. Teeth of osteichthyans from the Tallahatta–Lisbon Formation contact, Pigeon Creek, near Red Level, Conecuh-
Covington Counties, Alabama; 1-2) Pycnodus sp. (NJSMGP: 24037); 3-4) Lepisosteus sp. (NJSMGP: 24038); 5-8) Albula sp. 
(NJSMGP: 24039); 9-11) Egertonia isodonta Cocchi, 1864 (NJSMGP: 24040); 12-14) Cylindracanthus rectus Agassiz, 1843 
(NJSMGP: 24041); 15-18) Triciurides cf. T. sagittidens Winkler, 1874 (NJSMGP: 24043); 19-26) Sphyraena sp. (NJSMGP: 
24042); 27-33) Scomberomorus sp. (NJSMGP: 24044). Scale bars: 1-2; 5-6; 21-24= 0.5 cm; 3-4; 7-20; 24-32= 1 cm. Orientations: 
1, 5, 7, 10 = occlusal view; 2, 6, 8, 9, 16, 18, 21, 25, 29, 32 = basal view; 3, 11, 12, 13, 15, 17, 19, 23, 30 = lateral view; 20; 24, 28; 
31 = lingual view; 22, 26, 27; 33 = labial view; 4, 14 = interior view.
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Order Lepisosteiformes Hay, 1929
Family Lepisosteidae Cuvier, 1825
Genus Lepisosteus Lacépède, 1803

Lepisosteus sp.
 

Figure 2: 3-4

Referred Material – One ganoid scale: 
NJSMGP: 24038.

Description – The ganoid scale is complete 
and smooth on all surfaces. The exterior scale 
enameloid is thicker near the center and thin-
ner near the edges. These thinned edges facili-
tate imbrication with adjacent scales. The in-
terior surface is more osseous, has an anterior 
depression, and lacks thickened enameloid.

Discussion – Lepisosteus scales, although 
infrequently recovered, are a distinct and read-
ily identifiable component of Pigeon Creek os-
teichthyans assemblage. Ganoid scales, teeth 
and skeletal elements from the Lepisosteidae 
are classified as either Atractosteus or Lepisos-
teus (e.g., Wiley, 1976; Wiley & Stewart, 1977; 
Gottfried & Krause, 1998; Weems, 1999; Gayet 
et al., 2002; Barton, 2007). Scales assigned to 
Atractosteus display distinct enameloid sculp-
turing on their exterior surfaces, whereas Lepi-
sosteus scales are characteristically smooth and 
unsculptured. Fossils of individual teeth and 
skeletal elements from the Lepisosteidae are 
infrequently assigned to higher taxonomic lev-
els (e.g., Case & Schwimmer, 1988; Manning &  
Dockery, 1992; Rana et al., 2005; Manning, 
2006). Lepisosteus is predominantly a fresh-
water and estuarine, piscivorous fish although 
has been known to occasionally occur in shal-
low marine environments (Gilbert & Williams, 
2002).

Order Elopiformes Sauvage, 1875
Family Albulidae Bleeker, 1859

Genus Albula Scopoli, 1777
Albula sp.

 
Figure 2: 5-8 

Referred Material – One isolated tooth cap 
and fragmentary tooth plate: NJSMGP: 24039

Description – In occlusal view, the isolated 
tooth cap is roughly circular in outline and con-
tains a thin layer of smooth enamel. The base of 
the tooth exposes the pulp cavity that is deep-
ly concave, osseous, and has thick edges. The 

tooth plate has 2-3 stacked tooth caps that are 
nearly flat on the edges and highly convex in 
the center when viewed in occlusal view. Some 
of the tooth caps bear wear facets. The base of 
the tooth plate exposes the deeply concave pulp 
cavities of individual tooth caps.

Discussion – This isolated tooth cap and 
fragmentary tooth plate resembles those be-
longing to Albula sp. from the Eocene of Ala-
bama, Mississippi, South Carolina, and Virginia 
(Case, 1986; Weems, 1998; 1999; Clayton et al., 
2013). The tooth plate from Albula sp. from the 
Pigeon Creek osteichthyan assemblage can be 
readily distinguished from those belonging to 
other phyllodonts such as Paralbula, Egertonia, 
and Pycnodus by its thick tooth edges, higher 
profile in lateral view, and strongly concave 
pulp cavity. Teeth of Albula sp. may resemble 
Fisherichthys folmeri Weems (1999) from the 
lower Eocene of the Atlantic and Gulf Coastal 
Plains however, in lateral and occlusal views, F. 
folmeri teeth are distinctly conical and not cy-
lindrical like Albula. Most Eocene Albula teeth 
have been assigned to Albula owenii (Casier, 
1966). The tooth and tooth plate figured here 
appear similar to and may in fact belong to A. 
owenii. However, We refrain from species level 
classification based on two isolated specimens. 
Weems (1999) indicated that Albula teeth are 
similar to the modern bonefish, Albula vulpes 
(Linnaeus, 1758) known to prey upon marine 
invertebrates along the sea floor in the tropical 
shallow marine environments. 

Family Phyllodontidae Dartevelle & Casier, 
1943

Genus Egertonia Cocchi, 1864
Egertonia isodonta Cocchi, 1864

 
Figure 2: 9-11 

Referred Material – One fragmentary tooth 
plate: NJSMGP: 24040

Description – In occlusal view, the tooth 
plate contains equidimensional, circular tooth 
caps that are approximately 1.5 mm in diam-
eter. Some tooth caps display a granular surface 
while others are smooth. In lateral view, the 
tooth plate is slightly convex and exposes 3-4 
stacked tooth caps on all edges. The base of the 
tooth plate is slightly concave and partially os-
seous.
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Discussion – The Pigeon Creek Egertonia iso-
donta teeth are associated on a partial tooth plate 
and appear as thin, regularly stacked circular 
caps with convex occlusal surfaces and shallow, 
concave basal surfaces. Egertonia appears simi-
lar to the phyllodont Paralbula, known from the 
Cretaceous, due to the presence of small, thin, 
stacked, circular tooth caps. However, the teeth 
of Egertonia can be differentiated from Paral-
bula by the presence of vertically stacked tooth 
caps containing shallow, concave pulp cavities 
on the basal tooth surfaces. The teeth of Pseu-
doegertonia granulosus (Arambourg, 1952) are 
distinct from those of Egertonia sp. because 
they are irregular in shape. Since there are no 
extant Egertonia species, it is inferred based 
on the dentition that Egertonia preyed upon 
hard shelled invertebrates (Estes, 1969; Weems, 
1999).

Order Aulopiformes Rosen, 1973
Family Dercetidae Pictet, 1850

Genus Cylindracanthus Leidy, 1856
Cylindracanthus rectus (Agassiz, 1844)

Figure 2: 12-14

Referred Material – Two rostral fragments: 
NJSMGP: 24041

Description – The rostral fragment is cylin-
drical and contains equally-spaced longitudinal 
ridges. In cross section, the rostral fragment is 
symmetrical and has a cogwheel-like appear-
ance. 

Discussion – The Pigeon Creek Cylindracan-
thus rectus remains consist entirely of rostral 
fragments. Although fragmentary, these re-
mains have a cylindrical shape with a cogwheel-
like appearance in cross-section, making them 
highly diagnostic. Despite an enigmatic taxo-
nomic past, Cylindracanthus currently resides 
within Acipenseriformes (Parris et al., 2001; 
2007). This assignment is based on the pres-
ence of tooth remains associated with rostral 
fragments and the interpretation that Cylind-
racanthus had a cartilaginous skeleton similar 
to modern Acipenser and Polyodon (Parris et 
al., 2001; 2007). Currently, three species are as-
signed to Cylindracanthus and they include: C. 
acus Cope, 1870 which is an Eocene species dis-
playing more ossification and smaller tooth re-
mains than C. ornatus (Kemp et al., 1990); and 

C. rectus which is another Eocene species that 
lacks the bilateral symmetry seen in C. orna-
tus (Arambourg, 1952; Kemp et al., 1990). Cyl-
indracanthus rectus likely had a durophagous 
to piscivorous feeding behavior (Fallaw, 1964; 
Weems, 1999; Parris et al., 2001; 2007)

Order Perciformes Günther, 1880
Family Sphyraenidae Bonaparte, 1831

Genus Sphyraena Bloch & Schneider, 1801
Sphyraena sp.

 
Figure 2: 19-26 

Referred Material – Two teeth: NJSMGP: 
24042.

Description – The teeth are laterally com-
pressed with a slightly recurved tip that may 
contain a small post-apical barb. The anterior 
tooth edge is convex while the posterior edge is 
nearly vertical to slightly concave. Lateral tooth 
surfaces may contain faint longitudinal ridges. 
The teeth broaden near the base which is ovular 
in cross-section. 

Discussion – Teeth of Sphyraena sp. bear 
some resemblance to the teeth of Scomb-
eromorus and Trichiurides sp. which also occur 
in the Pigeon Creek osteichthyan assemblage. 
However, the teeth of Sphyraena sp. are unique 
and are laterally compressed with an ovular 
tooth base. These features are markedly differ-
ent from those of Scomberomorus sp. which has 
shorter, recurved, and broad teeth and Trichi-
urides sp. which has teeth that are more slen-
der, recurved, and circular near the tooth base 
in comparison to Sphyraena sp. (Weems, 1999). 
Although longitudinal ridges or striations pres-
ent on the lateral tooth edges of Sphyraena sp. 
have been utilized to distinguish between spe-
cies (i.e. Sphyraena striata Casier, 1946), the 
Pigeon Creek teeth display the same overall 
tooth morphology regardless of the presence of 
longitudinal grooves. Due to the variable den-
tal morphology exhibited in modern Sphyraena 
sp., we refrain from species level classification 
of the isolated Pigeon Creek Sphyraena teeth 
(Nishimoto & Ohe, 1982; Santini et al., 2015). 
Species of extant Sphyraena are known to be 
piscivorous and commonly occur in schools in 
coral reef and shallow marine environments 
(Weems, 1999; Purdy et al., 2001; Gilbert & Wil-
liams, 2002). 
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Family Trichiuridae Rafinesque, 1810
Genus Trichiurides Winkler, 1874

Trichiurides cf. T. sagittidens Winkler, 1874

Figure 2: 15-18 

Referred Material – Two teeth: NJSMGP: 
24043.

Description – The teeth are gracile, elon-
gated, and recurved posteriorly. A small barb 
may be present on the lingual tooth edge at the 
tooth apex. The teeth are laterally compressed 
although become broader near the base and are 
teardrop to circular in cross-section.

Discussion – The teeth of Trichiurides cf. T. 
sagittidens from the Pigeon Creek osteichthyan 
assemblage may appear similar to those belong-
ing to Sphyraena sp.. Although both species 
exhibit a laterally compressed tooth morphol-
ogy, those belonging to Trichiurides cf. T. sagit-
tidens are much more gracile, bear a needlelike-
barbed tooth apex, and have a slightly concave, 
teardrop-circular tooth base (Weems, 1999). 
As indicated by Weems (1999), there are no 
conclusive grounds to assign teeth identified 
as Trichiurides cf. T. sagittidens to variation in 
tooth position of other similar species includ-
ing Eutrichiurides winkleri Casier, 1946 or Trich-
iurus gulincki Casier, 1967. Teeth assigned to 
Trichiurides were originally described from the 
Eocene of Belgium by Winkler (1874); Leriche 
(1905) and Casier (1946) and compare favorably 
to those from the Eocene of Pigeon Creek, AL. It 
is inferred that Trichiurides cf. T. sagittidens re-
sembled modern cutlassfish such as Trichiurus 
lepturus (Linnaeus, 1758) which are piscivorous 
and inhabit estuarine to shallow and deep ma-
rine regions with mud-rich sediment (Weems, 
1999; Gilbert & Williams, 2002). 

Family Scombridae
Genus Scomberomorus Lacepède, 1801

Scomberomorus sp.
 

Figure 2: 27-33 

Referred Material – Two teeth: NJSMGP: 
24044.

Description – The teeth are short in height, 
recurved posteriorly, and increase in thickness 
towards the tooth base that is ovular in shape. 
The lingual surfaces are more convex than the 
labial surfaces.  

Discussion – Teeth of Scomberomorus sp. are 
similar to those of the Pigeon Creek Sphyraena sp. 
and Trichiurides cf. T. sagittidens described above. 
However, Scomberomorus teeth are broader, short-
er, and more convex on the lingual tooth surface 
than teeth from Sphyraena and Trichiurides sp.. 
Eocene teeth of Acanthocybium proosti Storms, 
1897 are shorter and more triangular in shape and 
teeth of Scomberomorus bleekeri Storms, 1892 are 
more erect and display less lingual curvature that 
those of the Pigeon Creek Scomberomorus sp.. 
As with the the Sphyraena sp. found in Pigeon 
Creek, we refrain from species level classification 
due to the variable dental morphology exhib-
ited in modern Scomberomorus sp., and lack of 
articulated fossil specimens from Pigeon Creek. 
Extant Scomberomorus sp. such as the Spanish 
mackerel, Scomberomorus maculatus (Mitchell, 
1815), is known to school in shallow marine and 
open ocean areas and are piscivorous; feeding on 
schooling bait fish (Gilbert & Williams, 2002).

Order Siluriformes Cuvier, 1817
Family Ariidae Günther, 1864

Ariidae gen. indet.
 

Figure 3: 1-4 

Referred Material – Two fragmentary fin 
spines: NJSMGP: 24045.

Description – The side of the fin spines con-
tain irregular, longitudinal grooves. The ante-
rior spine edges are smooth, and the posterior 
spine edges contain numerous triangular barbs.

Discussion – The occurrence of Ariidae in 
the Pigeon Creek osteichthyan assemblage 
is known only from fragmentary fin spines. 
However, the Pigeon Creek Ariidae fin spines 
can be distinguished from those of Bagre due 
to the lack of triangular barbs or serrations on 
the anterior spine edges (Weems, 1999). Extant 
Ariidae including the Hardhead Catfish, Ariop-
sis felis (Linnaeus, 1766) and the Gaftopsail Cat-
fish, Bagre marinus (Mitchell, 1815), are known 
to inhabit shallow coastal waters and have du-
rophagous to piscivorous feeding behaviors 
(Wheeler, 1975; Weems, 1999; Gilbert & Wil-
liams, 2002).
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Family Ostraciidae (Tyler, 1980)
Ostraciidae gen. indet.

 
Figure 3: 5-6

Referred Material – One dermal ossicle: 
NJSMGP: 24046.

Description – The dermal ossicle has a po-
lygonal shape, is smooth on the internal surface 
and is ornamented with round, scattered papil-
lae on the external surface. Papillae are slightly 
larger near the center and decrease in size to-
wards the edge of the ossicle. 

Discussion – Dermal ossicles resembling the 
Pigeon Creek specimen have been attributed to 
various species of boxfish (Weems, 1999). Box-
fish have been divided into two families that are 
the Aracanidae (Hollard, 1860) and Ostraciidae 
(Tyler, 1980). These families have distinct der-
mal ossicle morphology; the Aracanidae have a 
large, central papilla with six radiating rows of 
large papillae with smaller papillae in between, 
whereas the Ostraciidae lack radiating rows 
and papillae are not organized into distinct 
patterns (Weems, 1999). We assign the Pigeon 
Creek specimens to the Ostraciidae due to the 
presence of a large, centrally located papilla and 
lack of distinct, radiating rows of papillae. Al-
though, due to the variation in dermal ossicle 
patterns within the Ostraciidae depending on 
location on the body and with age, we refrain 
from higher level classification (Winterbottom 
& Tyler, 1983; Tyler & Gregorova, 1991; Weems, 
1999). Extant Ostraciidae such as the Honey-
comb Cowfish, Acanthostracion polygonius 
(Poey, 1876), are known to inhabit shallow ma-
rine environments and exhibit a durophagous 
feeding behavior (Weems, 1999; Gilbert & Wil-
liams, 2002).   

Order Beryciformes Regan, 1909
Cf. Beryciformes

Figure 3: 7-10

Referred Material – One fin spine: NJSMGP: 
24036

Description – The fin spine is posteriorly 
curved, saber-like in shape, and tapers to a distal 
sharp tip. Along the length of the spine shaft, 
there is a prominent and deep posterior sulcus 
extending nearly the entire length of the spine. 
The spine has smooth anterior, posterior, and 

lateral edges, but it also has a well-defined non-
dentate ridge extending along the anterior mid-
plane of the spine shaft. Towards the base, the 
spine shaft thickens and forms a complex box-
like structure for moveable articulation of the 
spine with the underlying pterygiophores. The 
attachment structure consists of a pair of lateral 
processes, oriented antero-posteriorly and sur-
rounding a tubular lumen. Flooring the lumen 
is a solid basal bar that is centrally thickened.

Discussion – The spine shaft and articulation 
structure at the base of the spine, especially the 
solid basal bar, resembles those found in mod-
ern beryciform fish, particularly of the Holocen-
tridae (e.g., Johnson & Patterson, 1993; Becker 
et al., 2009).  The spine is also nearly bilaterally 
symmetrical, but is modified by a distinct het-
erocanthy, as is typical among beryciform fin 
spines. However, due to the variation in beryci-
form fin spine morphology and lack of articu-
lated specimens from the Pigeon Creek locality, 
we tentatively assign this spine to Beryciformes 
and refrain from lower level classification. 

Discussion

Composition and Paleoecology of the Pigeon 
Creek Fish Assemblage

Osteichthyans found within the Pigeon Creek 
assemblage include species with piscivorous, 
and durophagous, shell crushing and nibbling 
tooth morphologies such as Sphyraena, Egerto-
nia, and Ostraciidae gen. indet. Both fossil and 
modern osteichthyans from these species are 
known to inhabit shallow marine, coastal envi-
ronments and nearshore or beach facies com-
munities (Gilbert &Williams, 2002; Helfman et 
al., 2009). This interpretation is also consistent 
with the abundant Thalassinoides burrows and 
shell horizons comprised of oysters, gastropods, 
and pelecypods found throughout the upper 
Tallahatta and Lower Lisbon Formations (Ivany, 
1998; Savrda et al., 2010). 

Some additional shoreline and shallow ma-
rine environments identified throughout the 
Gulf Coastal Plain during the middle Eocene 
that would have provided habitat for the Pi-
geon Creek osteichthyans included mangrove 
palm swamps, bays, and lagoons separated 
by offshore marine sandbar complexes, patch 
reefs, and tidal channels (Westgate, 1984; 1989; 
Breard, 1991; Gunnell, 2001). It is noteworthy 
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Figure 3. Indeterminate osteichthyan remains from the Tallahatta–Lisbon Formation contact, Pigeon Creek, near Red Level, 
Conecuh-Covington Counties, Alabama; 1-4) Ariidae gen. indet.  (NJSMGP: 24045); 5-6) Ostraciidae gen. indet. Dermal ossicle 
(NJSMGP: 24046); 7-10) Cf. Beryciformes fin spine (NJSMGP: 24036). Scale bars for 1-9 = 1 cm; 10 = 1 mm. Orientations: 1, 
2, 3, 5, 7 = lateral view; 4 = dorsal view; 8 = anterior view; 9-10 = posterior view. Arrow denotes the lumen and solid basal 
bar on the fin spine.

that most of the osteichthyan genera identified 
in these studies also occur in the Pigeon Creek 
osteichthyan assemblage. The Pigeon Creek os-
teichthyans inhabited an environment largely 
devoid of coral reefs, which are known to diver-
sify throughout the late Eocene and Oligocene 
in the southeastern United States and Caribbe-
an (Budd, 2000). Development of coral reefs on 
a global scale across this boundary is thought to 
account for the great radiation and diversifica-
tion of reef fishes during the middle Cenozoic 
(Budd, 2000; Goatley et al., 2010; Cowman & 
Bellwood, 2011).

The presence of certain osteichthyan and 
chondrichthyan species found in Alabama and 
Mississippi during the middle and late Eocene 
has been used to indicate the nearby proximity 
of a deeper marine, open ocean environment 
(Manning, 2003; Fierstine & Starnes, 2005; 
Maisch et al., 2014). Two of the species iden-
tified in these studies, Cylindracanthus rectus 
(Agassiz, 1844) and Carcharocles auriculatus 
(Blainville, 1818), are known from the contact 
horizon of the upper Tallahatta and Lower 
Lisbon Formations along Pigeon Creek and 
throughout south-central and southwestern Al-
abama (Clayton et al., 2013; Ehrert & Ebersole, 
2014;  Maisch et al., 2014; 2015). The occurrence 

of teeth from ancestral mackerels and barracu-
das, Scomberomorus and Sphyraena, respective-
ly, in the Pigeon Creek osteichthyan assemblage 
also supports the nearby proximity of a deeper 
marine, open ocean environment. Both modern 
and fossil Scomberomorus and Sphyraena are 
known to have streamlined-bodied, piscivorous 
dentitions, partial pelagic life mode, and global 
distribution (Weems, 1999; Gilbert & Williams, 
2002; Daly-Engel et al., 2012).

Taphonomy of the Pigeon Creek Assemblage 

Along Pigeon Creek, the osteichthyan lag depos-
it occurs between the upper Tallahatta and low-
er Lisbon Formations at various meander bends 
between the towns of Red Level and Brooklyn, 
Alabama, and the confluence of Pigeon Creek 
with the Sepulga River. While both formations 
have distinct lithological characteristics, the 
contact horizon between these two formations 
along Pigeon Creek can be best recognized in 
outcrop by the prominent Thalassinoides bur-
row horizon that forms an erosion-resistant 
hardpan of the lower Lisbon Formation. This 
hardpan channelizes water along straight sec-
tions of the creek and creates many of the deep-
er pools and waterfalls along meander bends. 
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Numerous studies throughout the Gulf 
Coastal Plain indicate that the observed dif-
ferences between lithologies such as the up-
per Tallahatta and lower Lisbon Formations 
are bathymetrically controlled and indicative 
of climatically driven, eustatic sea level fluc-
tuation (Van Wagoner et al., 1988; Cattaneo & 
Steel, 2003; Manning, 2006; Rogers et al., 2007). 
In Alabama and Mississippi, Mancini and Tew 
(1994) placed the contact between the Talla-
hatta and Lisbon Formations at the sequence 
boundary within second-order supercycle TA3 
and between third-order cycle 3.1 and 3.2 of 
Haq et al. (1988). Because the Pigeon Creek os-
teichthyan lag deposit resides directly above a 
disconformity between upper Tallahatta and 
lower Lisbon Formations, we interpret this lag 
deposit  to represents a transgressive surface of 
locally eroded and redeposited fossils during 
these third order sea level events. Other stud-
ies have identified this same lag deposit near 
the Point A Dam along the Coneuch River in 
Andalusia and Turkey Creek in Silas, Alabama 
(Clayton et al., 2013; Maisch et al., 2014). The 
regional occurrence of the Pigeon Creek lag 
across 200 kilometers of the Alabama Coastal 
Plain reinforces the role of sea level cyclicity in 
lag deposit formation.

The fossil osteichthyans from Pigeon Creek 
are in various states of preservation and also 
lend support to the role of sea level cyclicity in 
lag deposit formation. Many of the osteichthyan 
teeth collected directly from the lag deposit dis-
play abraded cusps and roots along with cutting 
edges that are reduced and rounded. However, 
some teeth display delicate tooth structures and 
sharp cutting edges on main cusps. We inter-
pret these differences to reflect varying degrees 
of reworking where some remains have been 
exposed to physical erosion for prolonged peri-
ods (Rogers et al., 2007; Becker & Chamberlain, 
2012; Boessenecker et al., 2014). Teeth eroded 
from the lag and recovered immediately adja-
cent to the Tallahatta–Lisbon Formation con-
tact and within Quaternary gravels of Pigeon 
Creek typically display an even greater degree 
of physical erosion. Chondrichthyan teeth co-
occurring with osteichthyan teeth in the Pigeon 
Creek lag as well as those eroded and deposited 
directly adjacent to the lag in creek gravels ex-
hibit similar taphonomic wear patterns. 

Correlative Properties and Transatlantic Occur-
rence of Fossil Fish Lags 

Over the past half a century, multiple inver-
tebrate fossils have been utilized to correlate 
shallow marine formations across the Atlan-
tic and Gulf Coastal Plains. Some examples of 
these include: oysters, planktonic foraminifera, 
calcareous nannofossils, mega-invertebrates, 
and trace fossils (Stephenson et al., 1942; Loe-
blich & Tappan, 1957; Hosman, 1960; Powell 
& Baum, 1982; Siesser, 1984; Worsley & Werle 
1984; Bybell & Gibson 1985; Jiang, 1997; Har-
ris et al., 1984; Ivany, 1998; Savrda et al., 2010). 
Studies of these invertebrate fossils also include 
trans-Atlantic correlations of taxa and from 
equivalent aged formations (Loeblich & Tap-
pan, 1957; Palmer, 1979; Dockery, 1984; Dock-
ery & Lozouet, 2003).  Recently, this list of fos-
sils has also identified the correlative potential 
of vertebrates and in particular, osteichthyans 
and chondrichthyans (Bendix-Almgreen, 1969; 
Weems, 1999; Cappetta, 2012). Both osteich-
thyans and chondrichthyans have well-docu-
mented fossil records from all states within the 
Atlantic and Gulf Coastal Plains since the Late 
Cretaceous (Westgate, 1989; Breard, 1991; Kent, 
1994; Weems, 1999; Cappetta, 2012; Maisch et 
al., 2014). Fossil teeth, in particular, from both 
osteichthyans and chondrichthyans are abun-
dant in shallow marine sediments and have 
biostratigraphic ranges that can provide stage 
boundary resolution (Cappetta, 2012). 

The middle Eocene (Lutetian) Pigeon Creek 
osteichthyan genera are all found across the At-
lantic and Gulf Coastal Plains, Greenland, West-
ern Europe, and Western Africa (Figures 1; 4). 
With the exception of Greenland that has Arius 
sp. fin spines, genera in the Pigeon Creek assem-
blage occur across the shallow marine shelves 
that fringe each of these continents (Figure 4; 
White, 1926; 1956; Kemp et al., 1990; Weems, 
1999; Case & Borodin, 2000; Van den Eeckhaut 
(pers comm.); Murray, 2000; Gonzalez-Rodri-
guez et al., 2013). Such broad scale correlation 
of osteichthyan genera at regional, continental, 
and intercontinental scales attests to an ances-
tral Northern Atlantic Ocean Basin with greater 
uniformity of sea surface temperatures and 
continuity of shallow marine shoreline habitat 
relative to the modern Northern Atlantic Ocean 
(Haq et al., 1988; Lear et al., 2004; Miller et al., 
2008; Liu et al., 2009; Norris et al., 2013). These 
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observations also suggest that the Pigeon Creek 
osteichthyans were highly mobile, nektonic 
predators and scavengers that had broad geo-
graphic ranges where migration and dispersal 
reflects ancestral ocean circulation (Figure 4). 
In the modern Northern Atlantic Ocean, physi-
cal barriers known to restrict migration and 
distribution of osteichthyans include sea sur-
face temperatures, major ocean currents, and 
bathymetry (e.g., Hooks et al., 1999; Weems, 
1999; Murray, 2000).

We hypothesize, based on modern analogy, 
that genera found in the Pigeon Creek osteich-
thyan assemblage would have been dispersed 
based on ocean circulation traveling clockwise 
within the Northern Atlantic Ocean Basin along 
the shallow shelf and between major landmass-

es (e.g., Moyer, 1984; Gilbert and Williams, 2002; 
Thurman and Trujillo, 2004; Leis et al., 2013; 
Simpson et al., 2013). This pathway would have 
provided limited open ocean exposure during 
eastward travel between North America, Green-
land, western Europe and northwestern Africa. 
Tethyan currents from the eastern side of the 
Northern Atlantic would have provided a west-
ward pathway towards North America and the 
Caribbean Sea.

To date, few reports document the occur-
rence of Paleocene and Eocene osteichthyans 
reported from the Caribbean, eastern South 
America, and eastern Mexico (e.g., Iturralde-
Vinent et al., 1996; Ferrusquia-Villafranca et al., 
1999; 2000; Gonzalez-Rodriguez et al., 2013). 
However, there have been numerous reports on 

Figure 4. Paleogeography of the middle Eocene Northern Atlantic Ocean Basin documenting ocean circulation and continuity 
of shallow marine shorelines between the Gulf and Atlantic Coastal Plains (1-2); Greenland (3); Western Europe (4); and, 
Western Africa (5). For osteichthyan occurrence data referring to: GCP: White, 1956; Case, 1984; 1986; Westgate, 1984; 1989; 
Breard, 1991; Breard & Stringer, 1995; 1999; Clayton et al., 2013; Pigeon Creek (this study); ACP: Fowler, 1911; Rapp, 1946; 
Weems, 1998; 1999; Case & Borodin, 2000a,b; Greenland: Bendix-Almgreen, 1969; Western Europe: Kemp et al., 1990; Van 
den Eeckhaut, pers. comm.; Western Africa: White, 1926; 1935; Arambourg, 1952; Longbottom, 1984; Murray, 2000; Adnet 
et al., 2010; and Mexico: González-Rodriguez et al., 2013). Paleogeography and paleocurrent maps redrawn from: Berggren 
& Hollister, 1974; Barron & Peterson, 1991; Scotese et al. 1998; Blakey, 2011; and Scotese, 2014.
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Oligocene, Miocene, Pliocene, and Pleistocene 
osteichthyans and chondrichthyans and from 
these same regions (e.g., Applegate, 1978; 1986; 
Gillette, 1984; Longbottom, 1979; Purdy et al., 
1996; Sanchez-Villagra et al., 2000; Aguilera & 
De Aguilera, 2001; 2004; Nieves-Rivera et al., 
2003; Underwood & Mitchell, 2004; Fernandes 
dos Reis, 2005; Ferreira-Costa et al., 2009; Pi-
miento et al., 2010; 2013a; 2013b; Carnevale et 
al., 2011; Underwood & Gunter, 2012; Gonza-
lez-Rodriguez et al., 2013; Laurito et al., 2014; 
Carrillo-Briceño et al., 2015). While the occur-
rence of Paleogene osteichthyans throughout 
the Americas in shallow marine sediments rep-
resents opportunity for future study, the gen-
eral absence of shallow marine shelf between 
western Africa and Eastern South America as 
well as counter currents in the southern portion 
of the ancestral Northern Atlantic Ocean gyre 
may have represented a substantial barrier to 
migration and dispersal of some osteichthyans 
during the Paleogene. Additional opportunity 
exists to document Paleogene osteichthyans 
from these regions and interpret the dispersal 
patterns of these fish throughout the ancestral 
Northern Atlantic Ocean. Future reports on Pa-
leogene osteichthyans will not only continue to 
improve their taxonomy, but also the utility of 
osteichthyans remains in chronostratigraphic 
analyses. 
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